280 lines
11 KiB
Python
280 lines
11 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn, ParamAttr
|
|
from paddle.nn import functional as F
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
from .self_attention import WrapEncoderForFeature
|
|
from .self_attention import WrapEncoder
|
|
from paddle.static import Program
|
|
from ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
|
|
import paddle.fluid.framework as framework
|
|
|
|
from collections import OrderedDict
|
|
gradient_clip = 10
|
|
|
|
|
|
class PVAM(nn.Layer):
|
|
def __init__(self, in_channels, char_num, max_text_length, num_heads,
|
|
num_encoder_tus, hidden_dims):
|
|
super(PVAM, self).__init__()
|
|
self.char_num = char_num
|
|
self.max_length = max_text_length
|
|
self.num_heads = num_heads
|
|
self.num_encoder_TUs = num_encoder_tus
|
|
self.hidden_dims = hidden_dims
|
|
# Transformer encoder
|
|
t = 256
|
|
c = 512
|
|
self.wrap_encoder_for_feature = WrapEncoderForFeature(
|
|
src_vocab_size=1,
|
|
max_length=t,
|
|
n_layer=self.num_encoder_TUs,
|
|
n_head=self.num_heads,
|
|
d_key=int(self.hidden_dims / self.num_heads),
|
|
d_value=int(self.hidden_dims / self.num_heads),
|
|
d_model=self.hidden_dims,
|
|
d_inner_hid=self.hidden_dims,
|
|
prepostprocess_dropout=0.1,
|
|
attention_dropout=0.1,
|
|
relu_dropout=0.1,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da",
|
|
weight_sharing=True)
|
|
|
|
# PVAM
|
|
self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
|
|
self.fc0 = paddle.nn.Linear(
|
|
in_features=in_channels,
|
|
out_features=in_channels, )
|
|
self.emb = paddle.nn.Embedding(
|
|
num_embeddings=self.max_length, embedding_dim=in_channels)
|
|
self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
|
|
self.fc1 = paddle.nn.Linear(
|
|
in_features=in_channels, out_features=1, bias_attr=False)
|
|
|
|
def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
|
|
b, c, h, w = inputs.shape
|
|
conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
|
|
conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
|
|
# transformer encoder
|
|
b, t, c = conv_features.shape
|
|
|
|
enc_inputs = [conv_features, encoder_word_pos, None]
|
|
word_features = self.wrap_encoder_for_feature(enc_inputs)
|
|
|
|
# pvam
|
|
b, t, c = word_features.shape
|
|
word_features = self.fc0(word_features)
|
|
word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
|
|
word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
|
|
word_pos_feature = self.emb(gsrm_word_pos)
|
|
word_pos_feature_ = paddle.reshape(word_pos_feature,
|
|
[-1, self.max_length, 1, c])
|
|
word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
|
|
y = word_pos_feature_ + word_features_
|
|
y = F.tanh(y)
|
|
attention_weight = self.fc1(y)
|
|
attention_weight = paddle.reshape(
|
|
attention_weight, shape=[-1, self.max_length, t])
|
|
attention_weight = F.softmax(attention_weight, axis=-1)
|
|
pvam_features = paddle.matmul(attention_weight,
|
|
word_features) #[b, max_length, c]
|
|
return pvam_features
|
|
|
|
|
|
class GSRM(nn.Layer):
|
|
def __init__(self, in_channels, char_num, max_text_length, num_heads,
|
|
num_encoder_tus, num_decoder_tus, hidden_dims):
|
|
super(GSRM, self).__init__()
|
|
self.char_num = char_num
|
|
self.max_length = max_text_length
|
|
self.num_heads = num_heads
|
|
self.num_encoder_TUs = num_encoder_tus
|
|
self.num_decoder_TUs = num_decoder_tus
|
|
self.hidden_dims = hidden_dims
|
|
|
|
self.fc0 = paddle.nn.Linear(
|
|
in_features=in_channels, out_features=self.char_num)
|
|
self.wrap_encoder0 = WrapEncoder(
|
|
src_vocab_size=self.char_num + 1,
|
|
max_length=self.max_length,
|
|
n_layer=self.num_decoder_TUs,
|
|
n_head=self.num_heads,
|
|
d_key=int(self.hidden_dims / self.num_heads),
|
|
d_value=int(self.hidden_dims / self.num_heads),
|
|
d_model=self.hidden_dims,
|
|
d_inner_hid=self.hidden_dims,
|
|
prepostprocess_dropout=0.1,
|
|
attention_dropout=0.1,
|
|
relu_dropout=0.1,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da",
|
|
weight_sharing=True)
|
|
|
|
self.wrap_encoder1 = WrapEncoder(
|
|
src_vocab_size=self.char_num + 1,
|
|
max_length=self.max_length,
|
|
n_layer=self.num_decoder_TUs,
|
|
n_head=self.num_heads,
|
|
d_key=int(self.hidden_dims / self.num_heads),
|
|
d_value=int(self.hidden_dims / self.num_heads),
|
|
d_model=self.hidden_dims,
|
|
d_inner_hid=self.hidden_dims,
|
|
prepostprocess_dropout=0.1,
|
|
attention_dropout=0.1,
|
|
relu_dropout=0.1,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da",
|
|
weight_sharing=True)
|
|
|
|
self.mul = lambda x: paddle.matmul(x=x,
|
|
y=self.wrap_encoder0.prepare_decoder.emb0.weight,
|
|
transpose_y=True)
|
|
|
|
def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
|
|
gsrm_slf_attn_bias2):
|
|
# ===== GSRM Visual-to-semantic embedding block =====
|
|
b, t, c = inputs.shape
|
|
pvam_features = paddle.reshape(inputs, [-1, c])
|
|
word_out = self.fc0(pvam_features)
|
|
word_ids = paddle.argmax(F.softmax(word_out), axis=1)
|
|
word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
|
|
|
|
#===== GSRM Semantic reasoning block =====
|
|
"""
|
|
This module is achieved through bi-transformers,
|
|
ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
|
|
"""
|
|
pad_idx = self.char_num
|
|
|
|
word1 = paddle.cast(word_ids, "float32")
|
|
word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
|
|
word1 = paddle.cast(word1, "int64")
|
|
word1 = word1[:, :-1, :]
|
|
word2 = word_ids
|
|
|
|
enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
|
|
enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
|
|
|
|
gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
|
|
gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
|
|
|
|
gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
|
|
value=0.,
|
|
data_format="NLC")
|
|
gsrm_feature2 = gsrm_feature2[:, 1:, ]
|
|
gsrm_features = gsrm_feature1 + gsrm_feature2
|
|
|
|
gsrm_out = self.mul(gsrm_features)
|
|
|
|
b, t, c = gsrm_out.shape
|
|
gsrm_out = paddle.reshape(gsrm_out, [-1, c])
|
|
|
|
return gsrm_features, word_out, gsrm_out
|
|
|
|
|
|
class VSFD(nn.Layer):
|
|
def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
|
|
super(VSFD, self).__init__()
|
|
self.char_num = char_num
|
|
self.fc0 = paddle.nn.Linear(
|
|
in_features=in_channels * 2, out_features=pvam_ch)
|
|
self.fc1 = paddle.nn.Linear(
|
|
in_features=pvam_ch, out_features=self.char_num)
|
|
|
|
def forward(self, pvam_feature, gsrm_feature):
|
|
b, t, c1 = pvam_feature.shape
|
|
b, t, c2 = gsrm_feature.shape
|
|
combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
|
|
img_comb_feature_ = paddle.reshape(
|
|
combine_feature_, shape=[-1, c1 + c2])
|
|
img_comb_feature_map = self.fc0(img_comb_feature_)
|
|
img_comb_feature_map = F.sigmoid(img_comb_feature_map)
|
|
img_comb_feature_map = paddle.reshape(
|
|
img_comb_feature_map, shape=[-1, t, c1])
|
|
combine_feature = img_comb_feature_map * pvam_feature + (
|
|
1.0 - img_comb_feature_map) * gsrm_feature
|
|
img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
|
|
|
|
out = self.fc1(img_comb_feature)
|
|
return out
|
|
|
|
|
|
class SRNHead(nn.Layer):
|
|
def __init__(self, in_channels, out_channels, max_text_length, num_heads,
|
|
num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
|
|
super(SRNHead, self).__init__()
|
|
self.char_num = out_channels
|
|
self.max_length = max_text_length
|
|
self.num_heads = num_heads
|
|
self.num_encoder_TUs = num_encoder_TUs
|
|
self.num_decoder_TUs = num_decoder_TUs
|
|
self.hidden_dims = hidden_dims
|
|
|
|
self.pvam = PVAM(
|
|
in_channels=in_channels,
|
|
char_num=self.char_num,
|
|
max_text_length=self.max_length,
|
|
num_heads=self.num_heads,
|
|
num_encoder_tus=self.num_encoder_TUs,
|
|
hidden_dims=self.hidden_dims)
|
|
|
|
self.gsrm = GSRM(
|
|
in_channels=in_channels,
|
|
char_num=self.char_num,
|
|
max_text_length=self.max_length,
|
|
num_heads=self.num_heads,
|
|
num_encoder_tus=self.num_encoder_TUs,
|
|
num_decoder_tus=self.num_decoder_TUs,
|
|
hidden_dims=self.hidden_dims)
|
|
self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)
|
|
|
|
self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
|
|
|
|
def forward(self, inputs, others):
|
|
encoder_word_pos = others[0]
|
|
gsrm_word_pos = others[1]
|
|
gsrm_slf_attn_bias1 = others[2]
|
|
gsrm_slf_attn_bias2 = others[3]
|
|
|
|
pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
|
|
|
|
gsrm_feature, word_out, gsrm_out = self.gsrm(
|
|
pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
|
|
gsrm_slf_attn_bias2)
|
|
|
|
final_out = self.vsfd(pvam_feature, gsrm_feature)
|
|
if not self.training:
|
|
final_out = F.softmax(final_out, axis=1)
|
|
|
|
_, decoded_out = paddle.topk(final_out, k=1)
|
|
|
|
predicts = OrderedDict([
|
|
('predict', final_out),
|
|
('pvam_feature', pvam_feature),
|
|
('decoded_out', decoded_out),
|
|
('word_out', word_out),
|
|
('gsrm_out', gsrm_out),
|
|
])
|
|
|
|
return predicts
|