PaddleOCR/ppocr/losses/distillation_loss.py

109 lines
3.7 KiB
Python

#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
from .basic_loss import DistanceLoss
class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self, model_name_pairs=[], act=None, key=None,
name="loss_dml"):
super().__init__(act=act)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
return loss_dict
class DistillationCTCLoss(CTCLoss):
def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
super().__init__()
self.model_name_list = model_name_list
self.key = key
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}".format(self.name, model_name,
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
return loss_dict
class DistillationDistanceLoss(DistanceLoss):
"""
"""
def __init__(self,
mode="l2",
model_name_pairs=[],
key=None,
name="loss_distance",
**kargs):
super().__init__(mode=mode, **kargs)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + "_l2"
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
key]
else:
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
idx)] = loss
return loss_dict