109 lines
3.7 KiB
Python
109 lines
3.7 KiB
Python
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
from .rec_ctc_loss import CTCLoss
|
|
from .basic_loss import DMLLoss
|
|
from .basic_loss import DistanceLoss
|
|
|
|
|
|
class DistillationDMLLoss(DMLLoss):
|
|
"""
|
|
"""
|
|
|
|
def __init__(self, model_name_pairs=[], act=None, key=None,
|
|
name="loss_dml"):
|
|
super().__init__(act=act)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.model_name_pairs = model_name_pairs
|
|
self.name = name
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
|
|
idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class DistillationCTCLoss(CTCLoss):
|
|
def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
|
|
super().__init__()
|
|
self.model_name_list = model_name_list
|
|
self.key = key
|
|
self.name = name
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.key is not None:
|
|
out = out[self.key]
|
|
loss = super().forward(out, batch)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}".format(self.name, model_name,
|
|
idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDistanceLoss(DistanceLoss):
|
|
"""
|
|
"""
|
|
|
|
def __init__(self,
|
|
mode="l2",
|
|
model_name_pairs=[],
|
|
key=None,
|
|
name="loss_distance",
|
|
**kargs):
|
|
super().__init__(mode=mode, **kargs)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.model_name_pairs = model_name_pairs
|
|
self.name = name + "_l2"
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
|
|
key]
|
|
else:
|
|
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
|
|
idx)] = loss
|
|
return loss_dict
|