PaddleOCR/ppocr/modeling/heads/cls_head.py

53 lines
1.6 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
import paddle.nn.functional as F
class ClsHead(nn.Layer):
"""
Class orientation
Args:
params(dict): super parameters for build Class network
"""
def __init__(self, in_channels, class_dim, **kwargs):
super(ClsHead, self).__init__()
self.pool = nn.AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(in_channels * 1.0)
self.fc = nn.Linear(
in_channels,
class_dim,
weight_attr=ParamAttr(
name="fc_0.w_0",
initializer=nn.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_0.b_0"), )
def forward(self, x, targets=None):
x = self.pool(x)
x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
x = self.fc(x)
if not self.training:
x = F.softmax(x, axis=1)
return x