PaddleOCR/ppocr/modeling/architectures/rec_model.py

115 lines
4.2 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy
class RecModel(object):
def __init__(self, params):
super(RecModel, self).__init__()
global_params = params['Global']
char_num = global_params['char_ops'].get_char_num()
global_params['char_num'] = char_num
if "TPS" in params:
tps_params = deepcopy(params["TPS"])
tps_params.update(global_params)
self.tps = create_module(tps_params['function'])\
(params=tps_params)
else:
self.tps = None
backbone_params = deepcopy(params["Backbone"])
backbone_params.update(global_params)
self.backbone = create_module(backbone_params['function'])\
(params=backbone_params)
head_params = deepcopy(params["Head"])
head_params.update(global_params)
self.head = create_module(head_params['function'])\
(params=head_params)
loss_params = deepcopy(params["Loss"])
loss_params.update(global_params)
self.loss = create_module(loss_params['function'])\
(params=loss_params)
self.loss_type = global_params['loss_type']
self.image_shape = global_params['image_shape']
self.max_text_length = global_params['max_text_length']
def create_feed(self, mode):
image_shape = deepcopy(self.image_shape)
image_shape.insert(0, -1)
image = fluid.data(name='image', shape=image_shape, dtype='float32')
if mode == "train":
if self.loss_type == "attention":
label_in = fluid.data(
name='label_in',
shape=[None, 1],
dtype='int32',
lod_level=1)
label_out = fluid.data(
name='label_out',
shape=[None, 1],
dtype='int32',
lod_level=1)
feed_list = [image, label_in, label_out]
labels = {'label_in': label_in, 'label_out': label_out}
else:
label = fluid.data(
name='label', shape=[None, 1], dtype='int32', lod_level=1)
feed_list = [image, label]
labels = {'label': label}
loader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=64,
use_double_buffer=True,
iterable=False)
else:
labels = None
loader = None
return image, labels, loader
def __call__(self, mode):
image, labels, loader = self.create_feed(mode)
if self.tps is None:
inputs = image
else:
inputs = self.tps(image)
conv_feas = self.backbone(inputs)
predicts = self.head(conv_feas, labels, mode)
decoded_out = predicts['decoded_out']
if mode == "train":
loss = self.loss(predicts, labels)
if self.loss_type == "attention":
label = labels['label_out']
else:
label = labels['label']
outputs = {'total_loss':loss, 'decoded_out':\
decoded_out, 'label':label}
return loader, outputs
elif mode == "export":
return [image, {'decoded_out': decoded_out}]
else:
return loader, {'decoded_out': decoded_out}