129 lines
4.6 KiB
Python
129 lines
4.6 KiB
Python
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
|
|
|
|
def get_bias_attr(k, name):
|
|
stdv = 1.0 / math.sqrt(k * 1.0)
|
|
initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
|
|
bias_attr = ParamAttr(initializer=initializer, name=name + "_b_attr")
|
|
return bias_attr
|
|
|
|
|
|
class Head(nn.Layer):
|
|
def __init__(self, in_channels, name_list):
|
|
super(Head, self).__init__()
|
|
self.conv1 = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(name=name_list[0] + '.w_0'),
|
|
bias_attr=False)
|
|
self.conv_bn1 = nn.BatchNorm(
|
|
num_channels=in_channels // 4,
|
|
param_attr=ParamAttr(
|
|
name=name_list[1] + '.w_0',
|
|
initializer=paddle.nn.initializer.Constant(value=1.0)),
|
|
bias_attr=ParamAttr(
|
|
name=name_list[1] + '.b_0',
|
|
initializer=paddle.nn.initializer.Constant(value=1e-4)),
|
|
moving_mean_name=name_list[1] + '.w_1',
|
|
moving_variance_name=name_list[1] + '.w_2',
|
|
act='relu')
|
|
self.conv2 = nn.Conv2DTranspose(
|
|
in_channels=in_channels // 4,
|
|
out_channels=in_channels // 4,
|
|
kernel_size=2,
|
|
stride=2,
|
|
weight_attr=ParamAttr(
|
|
name=name_list[2] + '.w_0',
|
|
initializer=paddle.nn.initializer.KaimingUniform()),
|
|
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv2"))
|
|
self.conv_bn2 = nn.BatchNorm(
|
|
num_channels=in_channels // 4,
|
|
param_attr=ParamAttr(
|
|
name=name_list[3] + '.w_0',
|
|
initializer=paddle.nn.initializer.Constant(value=1.0)),
|
|
bias_attr=ParamAttr(
|
|
name=name_list[3] + '.b_0',
|
|
initializer=paddle.nn.initializer.Constant(value=1e-4)),
|
|
moving_mean_name=name_list[3] + '.w_1',
|
|
moving_variance_name=name_list[3] + '.w_2',
|
|
act="relu")
|
|
self.conv3 = nn.Conv2DTranspose(
|
|
in_channels=in_channels // 4,
|
|
out_channels=1,
|
|
kernel_size=2,
|
|
stride=2,
|
|
weight_attr=ParamAttr(
|
|
name=name_list[4] + '.w_0',
|
|
initializer=paddle.nn.initializer.KaimingUniform()),
|
|
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv3"),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.conv_bn1(x)
|
|
x = self.conv2(x)
|
|
x = self.conv_bn2(x)
|
|
x = self.conv3(x)
|
|
x = F.sigmoid(x)
|
|
return x
|
|
|
|
|
|
class DBHead(nn.Layer):
|
|
"""
|
|
Differentiable Binarization (DB) for text detection:
|
|
see https://arxiv.org/abs/1911.08947
|
|
args:
|
|
params(dict): super parameters for build DB network
|
|
"""
|
|
|
|
def __init__(self, in_channels, k=50, **kwargs):
|
|
super(DBHead, self).__init__()
|
|
self.k = k
|
|
binarize_name_list = [
|
|
'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48',
|
|
'conv2d_transpose_1', 'binarize'
|
|
]
|
|
thresh_name_list = [
|
|
'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50',
|
|
'conv2d_transpose_3', 'thresh'
|
|
]
|
|
self.binarize = Head(in_channels, binarize_name_list)
|
|
self.thresh = Head(in_channels, thresh_name_list)
|
|
|
|
def step_function(self, x, y):
|
|
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
|
|
|
|
def forward(self, x):
|
|
shrink_maps = self.binarize(x)
|
|
if not self.training:
|
|
return {'maps': shrink_maps}
|
|
|
|
threshold_maps = self.thresh(x)
|
|
binary_maps = self.step_function(shrink_maps, threshold_maps)
|
|
y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
|
|
return {'maps': y}
|