110 lines
3.9 KiB
Python
110 lines
3.9 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle_serving_client import Client
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import re
|
|
import base64
|
|
from tools.infer.predict_det import TextDetector
|
|
from params import read_params
|
|
|
|
global_args = read_params()
|
|
if global_args.use_gpu:
|
|
from paddle_serving_server_gpu.web_service import WebService
|
|
else:
|
|
from paddle_serving_server.web_service import WebService
|
|
|
|
|
|
class TextDetectorHelper(TextDetector):
|
|
def __init__(self, args):
|
|
super(TextDetectorHelper, self).__init__(args)
|
|
if self.det_algorithm == "SAST":
|
|
self.fetch = [
|
|
"bn_f_border4.output.tmp_2", "bn_f_tco4.output.tmp_2",
|
|
"bn_f_tvo4.output.tmp_2", "sigmoid_0.tmp_0"
|
|
]
|
|
elif self.det_algorithm == "EAST":
|
|
self.fetch = ["sigmoid_0.tmp_0", "tmp_2"]
|
|
elif self.det_algorithm == "DB":
|
|
self.fetch = ["save_infer_model/scale_0.tmp_0"]
|
|
|
|
def preprocess(self, img):
|
|
img = img.copy()
|
|
im, ratio_list = self.preprocess_op(img)
|
|
if im is None:
|
|
return None, 0
|
|
return {
|
|
"image": im.copy()
|
|
}, self.fetch, {
|
|
"ratio_list": [ratio_list],
|
|
"ori_im": img
|
|
}
|
|
|
|
def postprocess(self, outputs, args):
|
|
outs_dict = {}
|
|
if self.det_algorithm == "EAST":
|
|
outs_dict['f_geo'] = outputs[0]
|
|
outs_dict['f_score'] = outputs[1]
|
|
elif self.det_algorithm == 'SAST':
|
|
outs_dict['f_border'] = outputs[0]
|
|
outs_dict['f_score'] = outputs[1]
|
|
outs_dict['f_tco'] = outputs[2]
|
|
outs_dict['f_tvo'] = outputs[3]
|
|
else:
|
|
outs_dict['maps'] = outputs[0]
|
|
dt_boxes_list = self.postprocess_op(outs_dict, args["ratio_list"])
|
|
dt_boxes = dt_boxes_list[0]
|
|
if self.det_algorithm == "SAST" and self.det_sast_polygon:
|
|
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes,
|
|
args["ori_im"].shape)
|
|
else:
|
|
dt_boxes = self.filter_tag_det_res(dt_boxes, args["ori_im"].shape)
|
|
return dt_boxes
|
|
|
|
|
|
class DetService(WebService):
|
|
def init_det(self):
|
|
self.text_detector = TextDetectorHelper(global_args)
|
|
|
|
def preprocess(self, feed=[], fetch=[]):
|
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
feed, fetch, self.tmp_args = self.text_detector.preprocess(im)
|
|
return feed, fetch
|
|
|
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
|
outputs = [fetch_map[x] for x in fetch]
|
|
det_res = self.text_detector.postprocess(outputs, self.tmp_args)
|
|
res = []
|
|
for i in range(len(det_res)):
|
|
res.append({"text_region": det_res[i].tolist()})
|
|
return res
|
|
|
|
if __name__ == "__main__":
|
|
ocr_service = DetService(name="ocr")
|
|
ocr_service.load_model_config(global_args.det_server_dir)
|
|
ocr_service.init_det()
|
|
if global_args.use_gpu:
|
|
ocr_service.prepare_server(
|
|
workdir="workdir", port=9292, device="gpu", gpuid=0)
|
|
else:
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
|
|
ocr_service.run_debugger_service()
|
|
ocr_service.run_web_service()
|