PaddleOCR/tools/export_model.py

102 lines
3.6 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
import argparse
import paddle
from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", help="configuration file to use")
parser.add_argument(
"-o", "--output_path", type=str, default='./output/infer/')
return parser.parse_args()
def main():
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
logger = get_logger()
# build post process
post_process_class = build_post_process(config['PostProcess'],
config['Global'])
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
init_model(config, model, logger)
model.eval()
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
if config['Architecture']['algorithm'] == "SRN":
other_shape = [
paddle.static.InputSpec(
shape=[None, 1, 64, 256], dtype='float32'), [
paddle.static.InputSpec(
shape=[None, 256, 1],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 25, 1],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 8, 25, 25], dtype="int64"),
paddle.static.InputSpec(
shape=[None, 8, 25, 25], dtype="int64")
]
]
model = to_static(model, input_spec=other_shape)
else:
infer_shape = [3, -1, -1]
if config['Architecture']['model_type'] == "rec":
infer_shape = [3, 32, -1] # for rec model, H must be 32
if 'Transform' in config['Architecture'] and config['Architecture'][
'Transform'] is not None and config['Architecture'][
'Transform']['name'] == 'TPS':
logger.info(
'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
)
infer_shape[-1] = 100
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
paddle.jit.save(model, save_path)
logger.info('inference model is saved to {}'.format(save_path))
if __name__ == "__main__":
main()