150 lines
5.6 KiB
Python
Executable File
150 lines
5.6 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import os
|
||
import sys
|
||
|
||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
sys.path.append(__dir__)
|
||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
||
|
||
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
||
|
||
import cv2
|
||
import copy
|
||
import numpy as np
|
||
import math
|
||
import time
|
||
import traceback
|
||
|
||
import tools.infer.utility as utility
|
||
from ppocr.postprocess import build_post_process
|
||
from ppocr.utils.logging import get_logger
|
||
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
||
|
||
logger = get_logger()
|
||
|
||
|
||
class TextClassifier(object):
|
||
def __init__(self, args):
|
||
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
|
||
self.cls_batch_num = args.cls_batch_num
|
||
self.cls_thresh = args.cls_thresh
|
||
postprocess_params = {
|
||
'name': 'ClsPostProcess',
|
||
"label_list": args.label_list,
|
||
}
|
||
self.postprocess_op = build_post_process(postprocess_params)
|
||
self.predictor, self.input_tensor, self.output_tensors = \
|
||
utility.create_predictor(args, 'cls', logger)
|
||
|
||
def resize_norm_img(self, img):
|
||
imgC, imgH, imgW = self.cls_image_shape
|
||
h = img.shape[0]
|
||
w = img.shape[1]
|
||
ratio = w / float(h)
|
||
if math.ceil(imgH * ratio) > imgW:
|
||
resized_w = imgW
|
||
else:
|
||
resized_w = int(math.ceil(imgH * ratio))
|
||
resized_image = cv2.resize(img, (resized_w, imgH))
|
||
resized_image = resized_image.astype('float32')
|
||
if self.cls_image_shape[0] == 1:
|
||
resized_image = resized_image / 255
|
||
resized_image = resized_image[np.newaxis, :]
|
||
else:
|
||
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
||
resized_image -= 0.5
|
||
resized_image /= 0.5
|
||
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
||
padding_im[:, :, 0:resized_w] = resized_image
|
||
return padding_im
|
||
|
||
def __call__(self, img_list):
|
||
img_list = copy.deepcopy(img_list)
|
||
img_num = len(img_list)
|
||
# Calculate the aspect ratio of all text bars
|
||
width_list = []
|
||
for img in img_list:
|
||
width_list.append(img.shape[1] / float(img.shape[0]))
|
||
# Sorting can speed up the cls process
|
||
indices = np.argsort(np.array(width_list))
|
||
|
||
cls_res = [['', 0.0]] * img_num
|
||
batch_num = self.cls_batch_num
|
||
elapse = 0
|
||
for beg_img_no in range(0, img_num, batch_num):
|
||
end_img_no = min(img_num, beg_img_no + batch_num)
|
||
norm_img_batch = []
|
||
max_wh_ratio = 0
|
||
for ino in range(beg_img_no, end_img_no):
|
||
h, w = img_list[indices[ino]].shape[0:2]
|
||
wh_ratio = w * 1.0 / h
|
||
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||
for ino in range(beg_img_no, end_img_no):
|
||
norm_img = self.resize_norm_img(img_list[indices[ino]])
|
||
norm_img = norm_img[np.newaxis, :]
|
||
norm_img_batch.append(norm_img)
|
||
norm_img_batch = np.concatenate(norm_img_batch)
|
||
norm_img_batch = norm_img_batch.copy()
|
||
starttime = time.time()
|
||
|
||
self.input_tensor.copy_from_cpu(norm_img_batch)
|
||
self.predictor.run()
|
||
prob_out = self.output_tensors[0].copy_to_cpu()
|
||
cls_result = self.postprocess_op(prob_out)
|
||
elapse += time.time() - starttime
|
||
for rno in range(len(cls_result)):
|
||
label, score = cls_result[rno]
|
||
cls_res[indices[beg_img_no + rno]] = [label, score]
|
||
if '180' in label and score > self.cls_thresh:
|
||
img_list[indices[beg_img_no + rno]] = cv2.rotate(
|
||
img_list[indices[beg_img_no + rno]], 1)
|
||
return img_list, cls_res, elapse
|
||
|
||
|
||
def main(args):
|
||
image_file_list = get_image_file_list(args.image_dir)
|
||
text_classifier = TextClassifier(args)
|
||
valid_image_file_list = []
|
||
img_list = []
|
||
for image_file in image_file_list:
|
||
img, flag = check_and_read_gif(image_file)
|
||
if not flag:
|
||
img = cv2.imread(image_file)
|
||
if img is None:
|
||
logger.info("error in loading image:{}".format(image_file))
|
||
continue
|
||
valid_image_file_list.append(image_file)
|
||
img_list.append(img)
|
||
try:
|
||
img_list, cls_res, predict_time = text_classifier(img_list)
|
||
except:
|
||
logger.info(traceback.format_exc())
|
||
logger.info(
|
||
"ERROR!!!! \n"
|
||
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
|
||
"If your model has tps module: "
|
||
"TPS does not support variable shape.\n"
|
||
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
|
||
exit()
|
||
for ino in range(len(img_list)):
|
||
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
|
||
cls_res[ino]))
|
||
logger.info("Total predict time for {} images, cost: {:.3f}".format(
|
||
len(img_list), predict_time))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main(utility.parse_args())
|