149 lines
5.1 KiB
Python
Executable File
149 lines
5.1 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import json
|
|
|
|
# from paddle.fluid.contrib.model_stat import summary
|
|
|
|
|
|
def set_paddle_flags(**kwargs):
|
|
for key, value in kwargs.items():
|
|
if os.environ.get(key, None) is None:
|
|
os.environ[key] = str(value)
|
|
|
|
|
|
# NOTE(paddle-dev): All of these flags should be
|
|
# set before `import paddle`. Otherwise, it would
|
|
# not take any effect.
|
|
set_paddle_flags(
|
|
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
|
|
)
|
|
|
|
from paddle import fluid
|
|
from ppocr.utils.utility import create_module
|
|
import program
|
|
from ppocr.utils.save_load import init_model
|
|
from ppocr.data.reader_main import reader_main
|
|
|
|
from ppocr.utils.utility import initial_logger
|
|
logger = initial_logger()
|
|
|
|
|
|
def draw_det_res(dt_boxes, config, img_name, ino):
|
|
if len(dt_boxes) > 0:
|
|
img_set_path = config['TestReader']['img_set_dir']
|
|
img_path = img_set_path + img_name
|
|
import cv2
|
|
src_im = cv2.imread(img_path)
|
|
for box in dt_boxes:
|
|
box = box.astype(np.int32).reshape((-1, 1, 2))
|
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
|
save_det_path = os.path.basename(config['Global'][
|
|
'save_res_path']) + "/det_results/"
|
|
if not os.path.exists(save_det_path):
|
|
os.makedirs(save_det_path)
|
|
save_path = os.path.join(save_det_path, "det_{}.jpg".format(img_name))
|
|
cv2.imwrite(save_path, src_im)
|
|
logger.info("The detected Image saved in {}".format(save_path))
|
|
|
|
|
|
def main():
|
|
config = program.load_config(FLAGS.config)
|
|
program.merge_config(FLAGS.opt)
|
|
print(config)
|
|
|
|
# check if set use_gpu=True in paddlepaddle cpu version
|
|
use_gpu = config['Global']['use_gpu']
|
|
program.check_gpu(use_gpu)
|
|
|
|
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
det_model = create_module(config['Architecture']['function'])(params=config)
|
|
|
|
startup_prog = fluid.Program()
|
|
eval_prog = fluid.Program()
|
|
with fluid.program_guard(eval_prog, startup_prog):
|
|
with fluid.unique_name.guard():
|
|
_, eval_outputs = det_model(mode="test")
|
|
fetch_name_list = list(eval_outputs.keys())
|
|
eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]
|
|
|
|
eval_prog = eval_prog.clone(for_test=True)
|
|
exe.run(startup_prog)
|
|
|
|
# load checkpoints
|
|
checkpoints = config['Global'].get('checkpoints')
|
|
if checkpoints:
|
|
path = checkpoints
|
|
fluid.load(eval_prog, path, exe)
|
|
logger.info("Finish initing model from {}".format(path))
|
|
else:
|
|
raise Exception("{} not exists!".format(checkpoints))
|
|
|
|
save_res_path = config['Global']['save_res_path']
|
|
with open(save_res_path, "wb") as fout:
|
|
test_reader = reader_main(config=config, mode='test')
|
|
tackling_num = 0
|
|
for data in test_reader():
|
|
img_num = len(data)
|
|
tackling_num = tackling_num + img_num
|
|
logger.info("tackling_num:%d", tackling_num)
|
|
img_list = []
|
|
ratio_list = []
|
|
img_name_list = []
|
|
for ino in range(img_num):
|
|
img_list.append(data[ino][0])
|
|
ratio_list.append(data[ino][1])
|
|
img_name_list.append(data[ino][2])
|
|
img_list = np.concatenate(img_list, axis=0)
|
|
outs = exe.run(eval_prog,\
|
|
feed={'image': img_list},\
|
|
fetch_list=eval_fetch_list)
|
|
|
|
global_params = config['Global']
|
|
postprocess_params = deepcopy(config["PostProcess"])
|
|
postprocess_params.update(global_params)
|
|
postprocess = create_module(postprocess_params['function'])\
|
|
(params=postprocess_params)
|
|
dt_boxes_list = postprocess(outs, ratio_list)
|
|
for ino in range(img_num):
|
|
dt_boxes = dt_boxes_list[ino]
|
|
img_name = img_name_list[ino]
|
|
dt_boxes_json = []
|
|
for box in dt_boxes:
|
|
tmp_json = {"transcription": ""}
|
|
tmp_json['points'] = box.tolist()
|
|
dt_boxes_json.append(tmp_json)
|
|
otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
|
|
fout.write(otstr.encode())
|
|
draw_det_res(dt_boxes, config, img_name, ino)
|
|
|
|
logger.info("success!")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = program.ArgsParser()
|
|
FLAGS = parser.parse_args()
|
|
main()
|