191 lines
7.0 KiB
Python
Executable File
191 lines
7.0 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import time
|
|
import sys
|
|
import paddle
|
|
|
|
import tools.infer.utility as utility
|
|
from ppocr.utils.logging import get_logger
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
|
from ppocr.data import create_operators, transform
|
|
from ppocr.postprocess import build_post_process
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class TextDetector(object):
|
|
def __init__(self, args):
|
|
self.det_algorithm = args.det_algorithm
|
|
self.use_zero_copy_run = args.use_zero_copy_run
|
|
postprocess_params = {}
|
|
if self.det_algorithm == "DB":
|
|
pre_process_list = [{
|
|
'DetResizeForTest': {
|
|
'limit_side_len': args.det_limit_side_len,
|
|
'limit_type': args.det_limit_type
|
|
}
|
|
}, {
|
|
'NormalizeImage': {
|
|
'std': [0.229, 0.224, 0.225],
|
|
'mean': [0.485, 0.456, 0.406],
|
|
'scale': '1./255.',
|
|
'order': 'hwc'
|
|
}
|
|
}, {
|
|
'ToCHWImage': None
|
|
}, {
|
|
'KeepKeys': {
|
|
'keep_keys': ['image', 'shape']
|
|
}
|
|
}]
|
|
postprocess_params['name'] = 'DBPostProcess'
|
|
postprocess_params["thresh"] = args.det_db_thresh
|
|
postprocess_params["box_thresh"] = args.det_db_box_thresh
|
|
postprocess_params["max_candidates"] = 1000
|
|
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
|
|
postprocess_params["use_dilation"] = True
|
|
else:
|
|
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
|
|
sys.exit(0)
|
|
|
|
self.preprocess_op = create_operators(pre_process_list)
|
|
self.postprocess_op = build_post_process(postprocess_params)
|
|
self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
|
|
args, 'det', logger) # paddle.jit.load(args.det_model_dir)
|
|
# self.predictor.eval()
|
|
|
|
def order_points_clockwise(self, pts):
|
|
"""
|
|
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
|
|
# sort the points based on their x-coordinates
|
|
"""
|
|
xSorted = pts[np.argsort(pts[:, 0]), :]
|
|
|
|
# grab the left-most and right-most points from the sorted
|
|
# x-roodinate points
|
|
leftMost = xSorted[:2, :]
|
|
rightMost = xSorted[2:, :]
|
|
|
|
# now, sort the left-most coordinates according to their
|
|
# y-coordinates so we can grab the top-left and bottom-left
|
|
# points, respectively
|
|
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
|
(tl, bl) = leftMost
|
|
|
|
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
|
|
(tr, br) = rightMost
|
|
|
|
rect = np.array([tl, tr, br, bl], dtype="float32")
|
|
return rect
|
|
|
|
def clip_det_res(self, points, img_height, img_width):
|
|
for pno in range(points.shape[0]):
|
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
|
return points
|
|
|
|
def filter_tag_det_res(self, dt_boxes, image_shape):
|
|
img_height, img_width = image_shape[0:2]
|
|
dt_boxes_new = []
|
|
for box in dt_boxes:
|
|
box = self.order_points_clockwise(box)
|
|
box = self.clip_det_res(box, img_height, img_width)
|
|
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
|
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
|
if rect_width <= 3 or rect_height <= 3:
|
|
continue
|
|
dt_boxes_new.append(box)
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
return dt_boxes
|
|
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
|
|
img_height, img_width = image_shape[0:2]
|
|
dt_boxes_new = []
|
|
for box in dt_boxes:
|
|
box = self.clip_det_res(box, img_height, img_width)
|
|
dt_boxes_new.append(box)
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
return dt_boxes
|
|
|
|
def __call__(self, img):
|
|
ori_im = img.copy()
|
|
data = {'image': img}
|
|
data = transform(data, self.preprocess_op)
|
|
img, shape_list = data
|
|
if img is None:
|
|
return None, 0
|
|
img = np.expand_dims(img, axis=0)
|
|
shape_list = np.expand_dims(shape_list, axis=0)
|
|
img = img.copy()
|
|
starttime = time.time()
|
|
|
|
if self.use_zero_copy_run:
|
|
self.input_tensor.copy_from_cpu(img)
|
|
self.predictor.zero_copy_run()
|
|
else:
|
|
im = paddle.fluid.core.PaddleTensor(img)
|
|
self.predictor.run([im])
|
|
outputs = []
|
|
for output_tensor in self.output_tensors:
|
|
output = output_tensor.copy_to_cpu()
|
|
outputs.append(output)
|
|
preds = outputs[0]
|
|
|
|
# preds = self.predictor(img)
|
|
post_result = self.postprocess_op(preds, shape_list)
|
|
dt_boxes = post_result[0]['points']
|
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
|
elapse = time.time() - starttime
|
|
return dt_boxes, elapse
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = utility.parse_args()
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
text_detector = TextDetector(args)
|
|
count = 0
|
|
total_time = 0
|
|
draw_img_save = "./inference_results"
|
|
if not os.path.exists(draw_img_save):
|
|
os.makedirs(draw_img_save)
|
|
for image_file in image_file_list:
|
|
img, flag = check_and_read_gif(image_file)
|
|
if not flag:
|
|
img = cv2.imread(image_file)
|
|
if img is None:
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
continue
|
|
dt_boxes, elapse = text_detector(img)
|
|
if count > 0:
|
|
total_time += elapse
|
|
count += 1
|
|
logger.info("Predict time of {}: {}".format(image_file, elapse))
|
|
src_im = utility.draw_text_det_res(dt_boxes, image_file)
|
|
img_name_pure = os.path.split(image_file)[-1]
|
|
img_path = os.path.join(draw_img_save,
|
|
"det_res_{}".format(img_name_pure))
|
|
cv2.imwrite(img_path, src_im)
|
|
logger.info("The visualized image saved in {}".format(img_path))
|
|
if count > 1:
|
|
logger.info("Avg Time: {}".format(total_time / (count - 1)))
|