275 lines
11 KiB
Python
Executable File
275 lines
11 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import os
|
||
import sys
|
||
|
||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
sys.path.append(__dir__)
|
||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
||
|
||
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
||
|
||
import cv2
|
||
import numpy as np
|
||
import math
|
||
import time
|
||
import traceback
|
||
import paddle
|
||
|
||
import tools.infer.utility as utility
|
||
from ppocr.postprocess import build_post_process
|
||
from ppocr.utils.logging import get_logger
|
||
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
||
|
||
logger = get_logger()
|
||
|
||
|
||
class TextRecognizer(object):
|
||
def __init__(self, args):
|
||
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
||
self.character_type = args.rec_char_type
|
||
self.rec_batch_num = args.rec_batch_num
|
||
self.rec_algorithm = args.rec_algorithm
|
||
postprocess_params = {
|
||
'name': 'CTCLabelDecode',
|
||
"character_type": args.rec_char_type,
|
||
"character_dict_path": args.rec_char_dict_path,
|
||
"use_space_char": args.use_space_char
|
||
}
|
||
if self.rec_algorithm == "SRN":
|
||
postprocess_params = {
|
||
'name': 'SRNLabelDecode',
|
||
"character_type": args.rec_char_type,
|
||
"character_dict_path": args.rec_char_dict_path,
|
||
"use_space_char": args.use_space_char
|
||
}
|
||
self.postprocess_op = build_post_process(postprocess_params)
|
||
self.predictor, self.input_tensor, self.output_tensors = \
|
||
utility.create_predictor(args, 'rec', logger)
|
||
|
||
def resize_norm_img(self, img, max_wh_ratio):
|
||
imgC, imgH, imgW = self.rec_image_shape
|
||
assert imgC == img.shape[2]
|
||
if self.character_type == "ch":
|
||
imgW = int((32 * max_wh_ratio))
|
||
h, w = img.shape[:2]
|
||
ratio = w / float(h)
|
||
if math.ceil(imgH * ratio) > imgW:
|
||
resized_w = imgW
|
||
else:
|
||
resized_w = int(math.ceil(imgH * ratio))
|
||
resized_image = cv2.resize(img, (resized_w, imgH))
|
||
resized_image = resized_image.astype('float32')
|
||
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
||
resized_image -= 0.5
|
||
resized_image /= 0.5
|
||
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
||
padding_im[:, :, 0:resized_w] = resized_image
|
||
return padding_im
|
||
|
||
def resize_norm_img_srn(self, img, image_shape):
|
||
imgC, imgH, imgW = image_shape
|
||
|
||
img_black = np.zeros((imgH, imgW))
|
||
im_hei = img.shape[0]
|
||
im_wid = img.shape[1]
|
||
|
||
if im_wid <= im_hei * 1:
|
||
img_new = cv2.resize(img, (imgH * 1, imgH))
|
||
elif im_wid <= im_hei * 2:
|
||
img_new = cv2.resize(img, (imgH * 2, imgH))
|
||
elif im_wid <= im_hei * 3:
|
||
img_new = cv2.resize(img, (imgH * 3, imgH))
|
||
else:
|
||
img_new = cv2.resize(img, (imgW, imgH))
|
||
|
||
img_np = np.asarray(img_new)
|
||
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
|
||
img_black[:, 0:img_np.shape[1]] = img_np
|
||
img_black = img_black[:, :, np.newaxis]
|
||
|
||
row, col, c = img_black.shape
|
||
c = 1
|
||
|
||
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|
||
|
||
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
|
||
|
||
imgC, imgH, imgW = image_shape
|
||
feature_dim = int((imgH / 8) * (imgW / 8))
|
||
|
||
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
|
||
(feature_dim, 1)).astype('int64')
|
||
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
|
||
(max_text_length, 1)).astype('int64')
|
||
|
||
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
||
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
|
||
[-1, 1, max_text_length, max_text_length])
|
||
gsrm_slf_attn_bias1 = np.tile(
|
||
gsrm_slf_attn_bias1,
|
||
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
||
|
||
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
|
||
[-1, 1, max_text_length, max_text_length])
|
||
gsrm_slf_attn_bias2 = np.tile(
|
||
gsrm_slf_attn_bias2,
|
||
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
||
|
||
encoder_word_pos = encoder_word_pos[np.newaxis, :]
|
||
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
|
||
|
||
return [
|
||
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
||
gsrm_slf_attn_bias2
|
||
]
|
||
|
||
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
|
||
norm_img = self.resize_norm_img_srn(img, image_shape)
|
||
norm_img = norm_img[np.newaxis, :]
|
||
|
||
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
|
||
self.srn_other_inputs(image_shape, num_heads, max_text_length)
|
||
|
||
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
|
||
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
|
||
encoder_word_pos = encoder_word_pos.astype(np.int64)
|
||
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
|
||
|
||
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
||
gsrm_slf_attn_bias2)
|
||
|
||
def __call__(self, img_list):
|
||
img_num = len(img_list)
|
||
# Calculate the aspect ratio of all text bars
|
||
width_list = []
|
||
for img in img_list:
|
||
width_list.append(img.shape[1] / float(img.shape[0]))
|
||
# Sorting can speed up the recognition process
|
||
indices = np.argsort(np.array(width_list))
|
||
|
||
# rec_res = []
|
||
rec_res = [['', 0.0]] * img_num
|
||
batch_num = self.rec_batch_num
|
||
elapse = 0
|
||
for beg_img_no in range(0, img_num, batch_num):
|
||
end_img_no = min(img_num, beg_img_no + batch_num)
|
||
norm_img_batch = []
|
||
max_wh_ratio = 0
|
||
for ino in range(beg_img_no, end_img_no):
|
||
# h, w = img_list[ino].shape[0:2]
|
||
h, w = img_list[indices[ino]].shape[0:2]
|
||
wh_ratio = w * 1.0 / h
|
||
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||
for ino in range(beg_img_no, end_img_no):
|
||
if self.rec_algorithm != "SRN":
|
||
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
||
max_wh_ratio)
|
||
norm_img = norm_img[np.newaxis, :]
|
||
norm_img_batch.append(norm_img)
|
||
else:
|
||
norm_img = self.process_image_srn(
|
||
img_list[indices[ino]], self.rec_image_shape, 8, 25)
|
||
encoder_word_pos_list = []
|
||
gsrm_word_pos_list = []
|
||
gsrm_slf_attn_bias1_list = []
|
||
gsrm_slf_attn_bias2_list = []
|
||
encoder_word_pos_list.append(norm_img[1])
|
||
gsrm_word_pos_list.append(norm_img[2])
|
||
gsrm_slf_attn_bias1_list.append(norm_img[3])
|
||
gsrm_slf_attn_bias2_list.append(norm_img[4])
|
||
norm_img_batch.append(norm_img[0])
|
||
norm_img_batch = np.concatenate(norm_img_batch)
|
||
norm_img_batch = norm_img_batch.copy()
|
||
|
||
if self.rec_algorithm == "SRN":
|
||
starttime = time.time()
|
||
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
|
||
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
|
||
gsrm_slf_attn_bias1_list = np.concatenate(
|
||
gsrm_slf_attn_bias1_list)
|
||
gsrm_slf_attn_bias2_list = np.concatenate(
|
||
gsrm_slf_attn_bias2_list)
|
||
|
||
inputs = [
|
||
norm_img_batch,
|
||
encoder_word_pos_list,
|
||
gsrm_word_pos_list,
|
||
gsrm_slf_attn_bias1_list,
|
||
gsrm_slf_attn_bias2_list,
|
||
]
|
||
input_names = self.predictor.get_input_names()
|
||
for i in range(len(input_names)):
|
||
input_tensor = self.predictor.get_input_handle(input_names[
|
||
i])
|
||
input_tensor.copy_from_cpu(inputs[i])
|
||
self.predictor.run()
|
||
outputs = []
|
||
for output_tensor in self.output_tensors:
|
||
output = output_tensor.copy_to_cpu()
|
||
outputs.append(output)
|
||
preds = {"predict": outputs[2]}
|
||
else:
|
||
starttime = time.time()
|
||
self.input_tensor.copy_from_cpu(norm_img_batch)
|
||
self.predictor.run()
|
||
|
||
outputs = []
|
||
for output_tensor in self.output_tensors:
|
||
output = output_tensor.copy_to_cpu()
|
||
outputs.append(output)
|
||
preds = outputs[0]
|
||
|
||
rec_result = self.postprocess_op(preds)
|
||
for rno in range(len(rec_result)):
|
||
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
||
elapse += time.time() - starttime
|
||
return rec_res, elapse
|
||
|
||
|
||
def main(args):
|
||
image_file_list = get_image_file_list(args.image_dir)
|
||
text_recognizer = TextRecognizer(args)
|
||
valid_image_file_list = []
|
||
img_list = []
|
||
for image_file in image_file_list:
|
||
img, flag = check_and_read_gif(image_file)
|
||
if not flag:
|
||
img = cv2.imread(image_file)
|
||
if img is None:
|
||
logger.info("error in loading image:{}".format(image_file))
|
||
continue
|
||
valid_image_file_list.append(image_file)
|
||
img_list.append(img)
|
||
try:
|
||
rec_res, predict_time = text_recognizer(img_list)
|
||
except:
|
||
logger.info(traceback.format_exc())
|
||
logger.info(
|
||
"ERROR!!!! \n"
|
||
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
|
||
"If your model has tps module: "
|
||
"TPS does not support variable shape.\n"
|
||
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
|
||
exit()
|
||
for ino in range(len(img_list)):
|
||
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
|
||
rec_res[ino]))
|
||
logger.info("Total predict time for {} images, cost: {:.3f}".format(
|
||
len(img_list), predict_time))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main(utility.parse_args())
|