145 lines
6.0 KiB
Python
145 lines
6.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
import subprocess
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
|
import cv2
|
|
import numpy as np
|
|
import time
|
|
import logging
|
|
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
|
from ppocr.utils.logging import get_logger
|
|
from tools.infer.predict_system import TextSystem
|
|
from ppstructure.table.predict_table import TableSystem, to_excel
|
|
from ppstructure.utility import parse_args, draw_structure_result
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class OCRSystem(object):
|
|
def __init__(self, args):
|
|
import layoutparser as lp
|
|
args.det_limit_type = 'resize_long'
|
|
args.drop_score = 0
|
|
if not args.show_log:
|
|
logger.setLevel(logging.INFO)
|
|
self.text_system = TextSystem(args)
|
|
self.table_system = TableSystem(args, self.text_system.text_detector, self.text_system.text_recognizer)
|
|
self.table_layout = lp.PaddleDetectionLayoutModel("lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
|
|
threshold=0.5, enable_mkldnn=args.enable_mkldnn,
|
|
enforce_cpu=not args.use_gpu, thread_num=args.cpu_threads)
|
|
self.use_angle_cls = args.use_angle_cls
|
|
self.drop_score = args.drop_score
|
|
|
|
def __call__(self, img):
|
|
ori_im = img.copy()
|
|
layout_res = self.table_layout.detect(img[..., ::-1])
|
|
res_list = []
|
|
for region in layout_res:
|
|
x1, y1, x2, y2 = region.coordinates
|
|
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
|
roi_img = ori_im[y1:y2, x1:x2, :]
|
|
if region.type == 'Table':
|
|
res = self.table_system(roi_img)
|
|
else:
|
|
filter_boxes, filter_rec_res = self.text_system(roi_img)
|
|
filter_boxes = [x + [x1, y1] for x in filter_boxes]
|
|
filter_boxes = [x.reshape(-1).tolist() for x in filter_boxes]
|
|
# remove style char
|
|
style_token = ['<strike>', '<strike>', '<sup>', '</sub>', '<b>', '</b>', '<sub>', '</sup>',
|
|
'<overline>', '</overline>', '<underline>', '</underline>', '<i>', '</i>']
|
|
filter_rec_res_tmp = []
|
|
for rec_res in filter_rec_res:
|
|
rec_str, rec_conf = rec_res
|
|
for token in style_token:
|
|
if token in rec_str:
|
|
rec_str = rec_str.replace(token, '')
|
|
filter_rec_res_tmp.append((rec_str, rec_conf))
|
|
res = (filter_boxes, filter_rec_res_tmp)
|
|
res_list.append({'type': region.type, 'bbox': [x1, y1, x2, y2], 'img': roi_img, 'res': res})
|
|
return res_list
|
|
|
|
|
|
def save_structure_res(res, save_folder, img_name):
|
|
excel_save_folder = os.path.join(save_folder, img_name)
|
|
os.makedirs(excel_save_folder, exist_ok=True)
|
|
# save res
|
|
with open(os.path.join(excel_save_folder, 'res.txt'), 'w', encoding='utf8') as f:
|
|
for region in res:
|
|
if region['type'] == 'Table':
|
|
excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox']))
|
|
to_excel(region['res'], excel_path)
|
|
if region['type'] == 'Figure':
|
|
roi_img = region['img']
|
|
img_path = os.path.join(excel_save_folder, '{}.jpg'.format(region['bbox']))
|
|
cv2.imwrite(img_path, roi_img)
|
|
else:
|
|
for box, rec_res in zip(region['res'][0], region['res'][1]):
|
|
f.write('{}\t{}\n'.format(np.array(box).reshape(-1).tolist(), rec_res))
|
|
|
|
|
|
def main(args):
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
image_file_list = image_file_list
|
|
image_file_list = image_file_list[args.process_id::args.total_process_num]
|
|
save_folder = args.output
|
|
os.makedirs(save_folder, exist_ok=True)
|
|
|
|
structure_sys = OCRSystem(args)
|
|
img_num = len(image_file_list)
|
|
for i, image_file in enumerate(image_file_list):
|
|
logger.info("[{}/{}] {}".format(i, img_num, image_file))
|
|
img, flag = check_and_read_gif(image_file)
|
|
img_name = os.path.basename(image_file).split('.')[0]
|
|
|
|
if not flag:
|
|
img = cv2.imread(image_file)
|
|
if img is None:
|
|
logger.error("error in loading image:{}".format(image_file))
|
|
continue
|
|
starttime = time.time()
|
|
res = structure_sys(img)
|
|
save_structure_res(res, save_folder, img_name)
|
|
draw_img = draw_structure_result(img, res, args.vis_font_path)
|
|
cv2.imwrite(os.path.join(save_folder, img_name, 'show.jpg'), draw_img)
|
|
logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))
|
|
elapse = time.time() - starttime
|
|
logger.info("Predict time : {:.3f}s".format(elapse))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
if args.use_mp:
|
|
p_list = []
|
|
total_process_num = args.total_process_num
|
|
for process_id in range(total_process_num):
|
|
cmd = [sys.executable, "-u"] + sys.argv + [
|
|
"--process_id={}".format(process_id),
|
|
"--use_mp={}".format(False)
|
|
]
|
|
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
|
|
p_list.append(p)
|
|
for p in p_list:
|
|
p.wait()
|
|
else:
|
|
main(args)
|