165 lines
6.5 KiB
Python
165 lines
6.5 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import os
|
|
from paddle.io import Dataset
|
|
from .imaug import transform, create_operators
|
|
import random
|
|
|
|
|
|
class PGDateSet(Dataset):
|
|
def __init__(self, config, mode, logger):
|
|
super(PGDateSet, self).__init__()
|
|
|
|
self.logger = logger
|
|
global_config = config['Global']
|
|
dataset_config = config[mode]['dataset']
|
|
loader_config = config[mode]['loader']
|
|
|
|
label_file_list = dataset_config.pop('label_file_list')
|
|
data_source_num = len(label_file_list)
|
|
ratio_list = dataset_config.get("ratio_list", [1.0])
|
|
if isinstance(ratio_list, (float, int)):
|
|
ratio_list = [float(ratio_list)] * int(data_source_num)
|
|
self.data_format = dataset_config.get('data_format', 'icdar')
|
|
assert len(
|
|
ratio_list
|
|
) == data_source_num, "The length of ratio_list should be the same as the file_list."
|
|
# self.data_dir = dataset_config['data_dir']
|
|
self.do_shuffle = loader_config['shuffle']
|
|
|
|
logger.info("Initialize indexs of datasets:%s" % label_file_list)
|
|
self.data_lines = self.get_image_info_list(label_file_list, ratio_list,
|
|
self.data_format)
|
|
self.data_idx_order_list = list(range(len(self.data_lines)))
|
|
if mode.lower() == "train":
|
|
self.shuffle_data_random()
|
|
|
|
self.ops = create_operators(dataset_config['transforms'], global_config)
|
|
|
|
def shuffle_data_random(self):
|
|
if self.do_shuffle:
|
|
random.shuffle(self.data_lines)
|
|
return
|
|
|
|
def extract_polys(self, poly_txt_path):
|
|
"""
|
|
Read text_polys, txt_tags, txts from give txt file.
|
|
"""
|
|
text_polys, txt_tags, txts = [], [], []
|
|
with open(poly_txt_path) as f:
|
|
for line in f.readlines():
|
|
poly_str, txt = line.strip().split('\t')
|
|
poly = map(float, poly_str.split(','))
|
|
text_polys.append(
|
|
np.array(
|
|
list(poly), dtype=np.float32).reshape(-1, 2))
|
|
txts.append(txt)
|
|
if txt == '###':
|
|
txt_tags.append(True)
|
|
else:
|
|
txt_tags.append(False)
|
|
|
|
return np.array(list(map(np.array, text_polys))), \
|
|
np.array(txt_tags, dtype=np.bool), txts
|
|
|
|
def extract_info_textnet(self, im_fn, img_dir=''):
|
|
"""
|
|
Extract information from line in textnet format.
|
|
"""
|
|
info_list = im_fn.split('\t')
|
|
img_path = ''
|
|
for ext in ['.jpg', '.png', '.jpeg', '.JPG']:
|
|
if os.path.exists(os.path.join(img_dir, info_list[0] + ext)):
|
|
img_path = os.path.join(img_dir, info_list[0] + ext)
|
|
break
|
|
|
|
if img_path == '':
|
|
print('Image {0} NOT found in {1}, and it will be ignored.'.format(
|
|
info_list[0], img_dir))
|
|
|
|
nBox = (len(info_list) - 1) // 9
|
|
wordBBs, txts, txt_tags = [], [], []
|
|
for n in range(0, nBox):
|
|
wordBB = list(map(float, info_list[n * 9 + 1:(n + 1) * 9]))
|
|
txt = info_list[(n + 1) * 9]
|
|
wordBBs.append([[wordBB[0], wordBB[1]], [wordBB[2], wordBB[3]],
|
|
[wordBB[4], wordBB[5]], [wordBB[6], wordBB[7]]])
|
|
txts.append(txt)
|
|
if txt == '###':
|
|
txt_tags.append(True)
|
|
else:
|
|
txt_tags.append(False)
|
|
return img_path, np.array(wordBBs, dtype=np.float32), txt_tags, txts
|
|
|
|
def get_image_info_list(self, file_list, ratio_list, data_format='textnet'):
|
|
if isinstance(file_list, str):
|
|
file_list = [file_list]
|
|
data_lines = []
|
|
for idx, data_source in enumerate(file_list):
|
|
image_files = []
|
|
if data_format == 'icdar':
|
|
image_files = [
|
|
(data_source, x)
|
|
for x in os.listdir(os.path.join(data_source, 'rgb'))
|
|
if x.split('.')[-1] in ['jpg', 'png', 'jpeg', 'JPG']
|
|
]
|
|
elif data_format == 'textnet':
|
|
with open(data_source) as f:
|
|
image_files = [(data_source, x.strip())
|
|
for x in f.readlines()]
|
|
else:
|
|
print("Unrecognized data format...")
|
|
exit(-1)
|
|
image_files = random.sample(
|
|
image_files, round(len(image_files) * ratio_list[idx]))
|
|
data_lines.extend(image_files)
|
|
return data_lines
|
|
|
|
def __getitem__(self, idx):
|
|
file_idx = self.data_idx_order_list[idx]
|
|
data_path, data_line = self.data_lines[file_idx]
|
|
try:
|
|
if self.data_format == 'icdar':
|
|
im_path = os.path.join(data_path, 'rgb', data_line)
|
|
poly_path = os.path.join(data_path, 'poly',
|
|
data_line.split('.')[0] + '.txt')
|
|
text_polys, text_tags, text_strs = self.extract_polys(poly_path)
|
|
else:
|
|
image_dir = os.path.join(os.path.dirname(data_path), 'image')
|
|
im_path, text_polys, text_tags, text_strs = self.extract_info_textnet(
|
|
data_line, image_dir)
|
|
|
|
data = {
|
|
'img_path': im_path,
|
|
'polys': text_polys,
|
|
'tags': text_tags,
|
|
'strs': text_strs
|
|
}
|
|
with open(data['img_path'], 'rb') as f:
|
|
img = f.read()
|
|
data['image'] = img
|
|
outs = transform(data, self.ops)
|
|
except Exception as e:
|
|
self.logger.error(
|
|
"When parsing line {}, error happened with msg: {}".format(
|
|
self.data_idx_order_list[idx], e))
|
|
outs = None
|
|
if outs is None:
|
|
return self.__getitem__(np.random.randint(self.__len__()))
|
|
return outs
|
|
|
|
def __len__(self):
|
|
return len(self.data_idx_order_list)
|