188 lines
5.7 KiB
Python
188 lines
5.7 KiB
Python
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups=1,
|
|
if_act=True,
|
|
act=None,
|
|
name=None):
|
|
super(ConvBNLayer, self).__init__()
|
|
self.if_act = if_act
|
|
self.act = act
|
|
self.conv = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(name=name + '_weights'),
|
|
bias_attr=False)
|
|
|
|
self.bn = nn.BatchNorm(
|
|
num_channels=out_channels,
|
|
act=act,
|
|
param_attr=ParamAttr(name="bn_" + name + "_scale"),
|
|
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
|
|
moving_mean_name="bn_" + name + "_mean",
|
|
moving_variance_name="bn_" + name + "_variance")
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class DeConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups=1,
|
|
if_act=True,
|
|
act=None,
|
|
name=None):
|
|
super(DeConvBNLayer, self).__init__()
|
|
self.if_act = if_act
|
|
self.act = act
|
|
self.deconv = nn.Conv2DTranspose(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(name=name + '_weights'),
|
|
bias_attr=False)
|
|
self.bn = nn.BatchNorm(
|
|
num_channels=out_channels,
|
|
act=act,
|
|
param_attr=ParamAttr(name="bn_" + name + "_scale"),
|
|
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
|
|
moving_mean_name="bn_" + name + "_mean",
|
|
moving_variance_name="bn_" + name + "_variance")
|
|
|
|
def forward(self, x):
|
|
x = self.deconv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class EASTFPN(nn.Layer):
|
|
def __init__(self, in_channels, model_name, **kwargs):
|
|
super(EASTFPN, self).__init__()
|
|
self.model_name = model_name
|
|
if self.model_name == "large":
|
|
self.out_channels = 128
|
|
else:
|
|
self.out_channels = 64
|
|
self.in_channels = in_channels[::-1]
|
|
self.h1_conv = ConvBNLayer(
|
|
in_channels=self.out_channels+self.in_channels[1],
|
|
out_channels=self.out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_h_1")
|
|
self.h2_conv = ConvBNLayer(
|
|
in_channels=self.out_channels+self.in_channels[2],
|
|
out_channels=self.out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_h_2")
|
|
self.h3_conv = ConvBNLayer(
|
|
in_channels=self.out_channels+self.in_channels[3],
|
|
out_channels=self.out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_h_3")
|
|
self.g0_deconv = DeConvBNLayer(
|
|
in_channels=self.in_channels[0],
|
|
out_channels=self.out_channels,
|
|
kernel_size=4,
|
|
stride=2,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_g_0")
|
|
self.g1_deconv = DeConvBNLayer(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=4,
|
|
stride=2,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_g_1")
|
|
self.g2_deconv = DeConvBNLayer(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=4,
|
|
stride=2,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_g_2")
|
|
self.g3_conv = ConvBNLayer(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="unet_g_3")
|
|
|
|
def forward(self, x):
|
|
f = x[::-1]
|
|
|
|
h = f[0]
|
|
g = self.g0_deconv(h)
|
|
h = paddle.concat([g, f[1]], axis=1)
|
|
h = self.h1_conv(h)
|
|
g = self.g1_deconv(h)
|
|
h = paddle.concat([g, f[2]], axis=1)
|
|
h = self.h2_conv(h)
|
|
g = self.g2_deconv(h)
|
|
h = paddle.concat([g, f[3]], axis=1)
|
|
h = self.h3_conv(h)
|
|
g = self.g3_conv(h)
|
|
|
|
return g |