PaddleOCR/ppocr/modeling/necks/east_fpn.py

188 lines
5.7 KiB
Python

# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class DeConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(DeConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.deconv = nn.Conv2DTranspose(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.deconv(x)
x = self.bn(x)
return x
class EASTFPN(nn.Layer):
def __init__(self, in_channels, model_name, **kwargs):
super(EASTFPN, self).__init__()
self.model_name = model_name
if self.model_name == "large":
self.out_channels = 128
else:
self.out_channels = 64
self.in_channels = in_channels[::-1]
self.h1_conv = ConvBNLayer(
in_channels=self.out_channels+self.in_channels[1],
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_h_1")
self.h2_conv = ConvBNLayer(
in_channels=self.out_channels+self.in_channels[2],
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_h_2")
self.h3_conv = ConvBNLayer(
in_channels=self.out_channels+self.in_channels[3],
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_h_3")
self.g0_deconv = DeConvBNLayer(
in_channels=self.in_channels[0],
out_channels=self.out_channels,
kernel_size=4,
stride=2,
padding=1,
if_act=True,
act='relu',
name="unet_g_0")
self.g1_deconv = DeConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels,
kernel_size=4,
stride=2,
padding=1,
if_act=True,
act='relu',
name="unet_g_1")
self.g2_deconv = DeConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels,
kernel_size=4,
stride=2,
padding=1,
if_act=True,
act='relu',
name="unet_g_2")
self.g3_conv = ConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_g_3")
def forward(self, x):
f = x[::-1]
h = f[0]
g = self.g0_deconv(h)
h = paddle.concat([g, f[1]], axis=1)
h = self.h1_conv(h)
g = self.g1_deconv(h)
h = paddle.concat([g, f[2]], axis=1)
h = self.h2_conv(h)
g = self.g2_deconv(h)
h = paddle.concat([g, f[3]], axis=1)
h = self.h3_conv(h)
g = self.g3_conv(h)
return g