430 lines
16 KiB
Python
Executable File
430 lines
16 KiB
Python
Executable File
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import absolute_import
|
||
from __future__ import division
|
||
from __future__ import print_function
|
||
|
||
import os
|
||
import sys
|
||
import platform
|
||
import yaml
|
||
import time
|
||
import shutil
|
||
import paddle
|
||
import paddle.distributed as dist
|
||
from tqdm import tqdm
|
||
from argparse import ArgumentParser, RawDescriptionHelpFormatter
|
||
|
||
from ppocr.utils.stats import TrainingStats
|
||
from ppocr.utils.save_load import save_model
|
||
from ppocr.utils.utility import print_dict
|
||
from ppocr.utils.logging import get_logger
|
||
from ppocr.data import build_dataloader
|
||
import numpy as np
|
||
|
||
|
||
class ArgsParser(ArgumentParser):
|
||
def __init__(self):
|
||
super(ArgsParser, self).__init__(
|
||
formatter_class=RawDescriptionHelpFormatter)
|
||
self.add_argument("-c", "--config", help="configuration file to use")
|
||
self.add_argument(
|
||
"-o", "--opt", nargs='+', help="set configuration options")
|
||
|
||
def parse_args(self, argv=None):
|
||
args = super(ArgsParser, self).parse_args(argv)
|
||
assert args.config is not None, \
|
||
"Please specify --config=configure_file_path."
|
||
args.opt = self._parse_opt(args.opt)
|
||
return args
|
||
|
||
def _parse_opt(self, opts):
|
||
config = {}
|
||
if not opts:
|
||
return config
|
||
for s in opts:
|
||
s = s.strip()
|
||
k, v = s.split('=')
|
||
config[k] = yaml.load(v, Loader=yaml.Loader)
|
||
return config
|
||
|
||
|
||
class AttrDict(dict):
|
||
"""Single level attribute dict, NOT recursive"""
|
||
|
||
def __init__(self, **kwargs):
|
||
super(AttrDict, self).__init__()
|
||
super(AttrDict, self).update(kwargs)
|
||
|
||
def __getattr__(self, key):
|
||
if key in self:
|
||
return self[key]
|
||
raise AttributeError("object has no attribute '{}'".format(key))
|
||
|
||
|
||
global_config = AttrDict()
|
||
|
||
default_config = {'Global': {'debug': False, }}
|
||
|
||
|
||
def load_config(file_path):
|
||
"""
|
||
Load config from yml/yaml file.
|
||
Args:
|
||
file_path (str): Path of the config file to be loaded.
|
||
Returns: global config
|
||
"""
|
||
merge_config(default_config)
|
||
_, ext = os.path.splitext(file_path)
|
||
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
|
||
merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
|
||
return global_config
|
||
|
||
|
||
def merge_config(config):
|
||
"""
|
||
Merge config into global config.
|
||
Args:
|
||
config (dict): Config to be merged.
|
||
Returns: global config
|
||
"""
|
||
for key, value in config.items():
|
||
if "." not in key:
|
||
if isinstance(value, dict) and key in global_config:
|
||
global_config[key].update(value)
|
||
else:
|
||
global_config[key] = value
|
||
else:
|
||
sub_keys = key.split('.')
|
||
assert (
|
||
sub_keys[0] in global_config
|
||
), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
|
||
global_config.keys(), sub_keys[0])
|
||
cur = global_config[sub_keys[0]]
|
||
for idx, sub_key in enumerate(sub_keys[1:]):
|
||
if idx == len(sub_keys) - 2:
|
||
cur[sub_key] = value
|
||
else:
|
||
cur = cur[sub_key]
|
||
|
||
|
||
def check_gpu(use_gpu):
|
||
"""
|
||
Log error and exit when set use_gpu=true in paddlepaddle
|
||
cpu version.
|
||
"""
|
||
err = "Config use_gpu cannot be set as true while you are " \
|
||
"using paddlepaddle cpu version ! \nPlease try: \n" \
|
||
"\t1. Install paddlepaddle-gpu to run model on GPU \n" \
|
||
"\t2. Set use_gpu as false in config file to run " \
|
||
"model on CPU"
|
||
|
||
try:
|
||
if use_gpu and not paddle.is_compiled_with_cuda():
|
||
print(err)
|
||
sys.exit(1)
|
||
except Exception as e:
|
||
pass
|
||
|
||
|
||
def train(config,
|
||
train_dataloader,
|
||
valid_dataloader,
|
||
device,
|
||
model,
|
||
loss_class,
|
||
optimizer,
|
||
lr_scheduler,
|
||
post_process_class,
|
||
eval_class,
|
||
pre_best_model_dict,
|
||
logger,
|
||
vdl_writer=None):
|
||
cal_metric_during_train = config['Global'].get('cal_metric_during_train',
|
||
False)
|
||
log_smooth_window = config['Global']['log_smooth_window']
|
||
epoch_num = config['Global']['epoch_num']
|
||
print_batch_step = config['Global']['print_batch_step']
|
||
eval_batch_step = config['Global']['eval_batch_step']
|
||
|
||
global_step = 0
|
||
if 'global_step' in pre_best_model_dict:
|
||
global_step = pre_best_model_dict['global_step']
|
||
start_eval_step = 0
|
||
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
|
||
start_eval_step = eval_batch_step[0]
|
||
eval_batch_step = eval_batch_step[1]
|
||
if len(valid_dataloader) == 0:
|
||
logger.info(
|
||
'No Images in eval dataset, evaluation during training will be disabled'
|
||
)
|
||
start_eval_step = 1e111
|
||
logger.info(
|
||
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
|
||
format(start_eval_step, eval_batch_step))
|
||
save_epoch_step = config['Global']['save_epoch_step']
|
||
save_model_dir = config['Global']['save_model_dir']
|
||
if not os.path.exists(save_model_dir):
|
||
os.makedirs(save_model_dir)
|
||
main_indicator = eval_class.main_indicator
|
||
best_model_dict = {main_indicator: 0}
|
||
best_model_dict.update(pre_best_model_dict)
|
||
train_stats = TrainingStats(log_smooth_window, ['lr'])
|
||
model_average = False
|
||
model.train()
|
||
|
||
use_srn = config['Architecture']['algorithm'] == "SRN"
|
||
model_type = config['Architecture']['model_type']
|
||
|
||
if 'start_epoch' in best_model_dict:
|
||
start_epoch = best_model_dict['start_epoch']
|
||
else:
|
||
start_epoch = 1
|
||
|
||
for epoch in range(start_epoch, epoch_num + 1):
|
||
train_dataloader = build_dataloader(
|
||
config, 'Train', device, logger, seed=epoch)
|
||
train_batch_cost = 0.0
|
||
train_reader_cost = 0.0
|
||
batch_sum = 0
|
||
batch_start = time.time()
|
||
max_iter = len(train_dataloader) - 1 if platform.system(
|
||
) == "Windows" else len(train_dataloader)
|
||
for idx, batch in enumerate(train_dataloader):
|
||
train_reader_cost += time.time() - batch_start
|
||
if idx >= max_iter:
|
||
break
|
||
lr = optimizer.get_lr()
|
||
images = batch[0]
|
||
if use_srn:
|
||
others = batch[-4:]
|
||
preds = model(images, others)
|
||
model_average = True
|
||
elif model_type == "table":
|
||
others = batch[1:]
|
||
preds = model(images, others)
|
||
else:
|
||
preds = model(images)
|
||
loss = loss_class(preds, batch)
|
||
avg_loss = loss['loss']
|
||
avg_loss.backward()
|
||
optimizer.step()
|
||
optimizer.clear_grad()
|
||
|
||
train_batch_cost += time.time() - batch_start
|
||
batch_sum += len(images)
|
||
|
||
if not isinstance(lr_scheduler, float):
|
||
lr_scheduler.step()
|
||
|
||
# logger and visualdl
|
||
stats = {k: v.numpy().mean() for k, v in loss.items()}
|
||
stats['lr'] = lr
|
||
train_stats.update(stats)
|
||
|
||
if cal_metric_during_train: # only rec and cls need
|
||
batch = [item.numpy() for item in batch]
|
||
if model_type == 'table':
|
||
eval_class(preds, batch)
|
||
else:
|
||
post_result = post_process_class(preds, batch[1])
|
||
eval_class(post_result, batch)
|
||
metric = eval_class.get_metric()
|
||
train_stats.update(metric)
|
||
|
||
if vdl_writer is not None and dist.get_rank() == 0:
|
||
for k, v in train_stats.get().items():
|
||
vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
|
||
vdl_writer.add_scalar('TRAIN/lr', lr, global_step)
|
||
|
||
if dist.get_rank() == 0 and (
|
||
(global_step > 0 and global_step % print_batch_step == 0) or
|
||
(idx >= len(train_dataloader) - 1)):
|
||
logs = train_stats.log()
|
||
strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
|
||
epoch, epoch_num, global_step, logs, train_reader_cost /
|
||
print_batch_step, train_batch_cost / print_batch_step,
|
||
batch_sum, batch_sum / train_batch_cost)
|
||
logger.info(strs)
|
||
train_batch_cost = 0.0
|
||
train_reader_cost = 0.0
|
||
batch_sum = 0
|
||
# eval
|
||
if global_step > start_eval_step and \
|
||
(global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
|
||
if model_average:
|
||
Model_Average = paddle.incubate.optimizer.ModelAverage(
|
||
0.15,
|
||
parameters=model.parameters(),
|
||
min_average_window=10000,
|
||
max_average_window=15625)
|
||
Model_Average.apply()
|
||
cur_metric = eval(
|
||
model,
|
||
valid_dataloader,
|
||
post_process_class,
|
||
eval_class,
|
||
model_type,
|
||
use_srn=use_srn)
|
||
cur_metric_str = 'cur metric, {}'.format(', '.join(
|
||
['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
|
||
logger.info(cur_metric_str)
|
||
|
||
# logger metric
|
||
if vdl_writer is not None:
|
||
for k, v in cur_metric.items():
|
||
if isinstance(v, (float, int)):
|
||
vdl_writer.add_scalar('EVAL/{}'.format(k),
|
||
cur_metric[k], global_step)
|
||
if cur_metric[main_indicator] >= best_model_dict[
|
||
main_indicator]:
|
||
best_model_dict.update(cur_metric)
|
||
best_model_dict['best_epoch'] = epoch
|
||
save_model(
|
||
model,
|
||
optimizer,
|
||
save_model_dir,
|
||
logger,
|
||
is_best=True,
|
||
prefix='best_accuracy',
|
||
best_model_dict=best_model_dict,
|
||
epoch=epoch,
|
||
global_step=global_step)
|
||
best_str = 'best metric, {}'.format(', '.join([
|
||
'{}: {}'.format(k, v) for k, v in best_model_dict.items()
|
||
]))
|
||
logger.info(best_str)
|
||
# logger best metric
|
||
if vdl_writer is not None:
|
||
vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
|
||
best_model_dict[main_indicator],
|
||
global_step)
|
||
global_step += 1
|
||
optimizer.clear_grad()
|
||
batch_start = time.time()
|
||
if dist.get_rank() == 0:
|
||
save_model(
|
||
model,
|
||
optimizer,
|
||
save_model_dir,
|
||
logger,
|
||
is_best=False,
|
||
prefix='latest',
|
||
best_model_dict=best_model_dict,
|
||
epoch=epoch,
|
||
global_step=global_step)
|
||
if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
|
||
save_model(
|
||
model,
|
||
optimizer,
|
||
save_model_dir,
|
||
logger,
|
||
is_best=False,
|
||
prefix='iter_epoch_{}'.format(epoch),
|
||
best_model_dict=best_model_dict,
|
||
epoch=epoch,
|
||
global_step=global_step)
|
||
best_str = 'best metric, {}'.format(', '.join(
|
||
['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
|
||
logger.info(best_str)
|
||
if dist.get_rank() == 0 and vdl_writer is not None:
|
||
vdl_writer.close()
|
||
return
|
||
|
||
|
||
def eval(model, valid_dataloader, post_process_class, eval_class,
|
||
model_type, use_srn=False):
|
||
model.eval()
|
||
with paddle.no_grad():
|
||
total_frame = 0.0
|
||
total_time = 0.0
|
||
pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
|
||
max_iter = len(valid_dataloader) - 1 if platform.system(
|
||
) == "Windows" else len(valid_dataloader)
|
||
for idx, batch in enumerate(valid_dataloader):
|
||
if idx >= max_iter:
|
||
break
|
||
images = batch[0]
|
||
start = time.time()
|
||
|
||
if use_srn:
|
||
others = batch[-4:]
|
||
preds = model(images, others)
|
||
else:
|
||
preds = model(images)
|
||
|
||
batch = [item.numpy() for item in batch]
|
||
# Obtain usable results from post-processing methods
|
||
total_time += time.time() - start
|
||
# Evaluate the results of the current batch
|
||
if model_type == 'table':
|
||
eval_class(preds, batch)
|
||
else:
|
||
post_result = post_process_class(preds, batch[1])
|
||
eval_class(post_result, batch)
|
||
pbar.update(1)
|
||
total_frame += len(images)
|
||
# Get final metric,eg. acc or hmean
|
||
metric = eval_class.get_metric()
|
||
|
||
pbar.close()
|
||
model.train()
|
||
metric['fps'] = total_frame / total_time
|
||
return metric
|
||
|
||
|
||
def preprocess(is_train=False):
|
||
FLAGS = ArgsParser().parse_args()
|
||
config = load_config(FLAGS.config)
|
||
merge_config(FLAGS.opt)
|
||
|
||
# check if set use_gpu=True in paddlepaddle cpu version
|
||
use_gpu = config['Global']['use_gpu']
|
||
check_gpu(use_gpu)
|
||
|
||
alg = config['Architecture']['algorithm']
|
||
assert alg in [
|
||
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
|
||
'CLS', 'PGNet', 'Distillation', 'TableAttn'
|
||
]
|
||
|
||
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
|
||
device = paddle.set_device(device)
|
||
|
||
config['Global']['distributed'] = dist.get_world_size() != 1
|
||
if is_train:
|
||
# save_config
|
||
save_model_dir = config['Global']['save_model_dir']
|
||
os.makedirs(save_model_dir, exist_ok=True)
|
||
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
|
||
yaml.dump(
|
||
dict(config), f, default_flow_style=False, sort_keys=False)
|
||
log_file = '{}/train.log'.format(save_model_dir)
|
||
else:
|
||
log_file = None
|
||
logger = get_logger(name='root', log_file=log_file)
|
||
if config['Global']['use_visualdl']:
|
||
from visualdl import LogWriter
|
||
save_model_dir = config['Global']['save_model_dir']
|
||
vdl_writer_path = '{}/vdl/'.format(save_model_dir)
|
||
os.makedirs(vdl_writer_path, exist_ok=True)
|
||
vdl_writer = LogWriter(logdir=vdl_writer_path)
|
||
else:
|
||
vdl_writer = None
|
||
print_dict(config, logger)
|
||
logger.info('train with paddle {} and device {}'.format(paddle.__version__,
|
||
device))
|
||
return config, device, logger, vdl_writer
|