80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle_serving_client import Client
|
|
from paddle_serving_app.reader import OCRReader
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import os
|
|
from paddle_serving_client import Client
|
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
|
if sys.argv[1] == 'gpu':
|
|
from paddle_serving_server_gpu.web_service import WebService
|
|
elif sys.argv[1] == 'cpu':
|
|
from paddle_serving_server.web_service import WebService
|
|
import time
|
|
import re
|
|
import base64
|
|
|
|
|
|
class OCRService(WebService):
|
|
def init_rec(self):
|
|
self.ocr_reader = OCRReader()
|
|
|
|
def preprocess(self, feed=[], fetch=[]):
|
|
img_list = []
|
|
for feed_data in feed:
|
|
data = base64.b64decode(feed_data["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
img_list.append(im)
|
|
max_wh_ratio = 0
|
|
for i, boximg in enumerate(img_list):
|
|
h, w = boximg.shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
|
|
max_wh_ratio).shape
|
|
imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
|
|
for i, img in enumerate(img_list):
|
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
|
imgs[i] = norm_img
|
|
feed = {"image": imgs.copy()}
|
|
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
|
return feed, fetch
|
|
|
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
|
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
|
|
res_lst = []
|
|
for res in rec_res:
|
|
res_lst.append(res[0])
|
|
res = {"res": res_lst}
|
|
return res
|
|
|
|
|
|
ocr_service = OCRService(name="ocr")
|
|
ocr_service.load_model_config("ocr_rec_model")
|
|
ocr_service.init_rec()
|
|
if sys.argv[1] == 'gpu':
|
|
ocr_service.set_gpus("0")
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
|
ocr_service.run_debugger_service(gpu=True)
|
|
elif sys.argv[1] == 'cpu':
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
|
|
ocr_service.run_debugger_service()
|
|
ocr_service.run_web_service()
|