PaddleOCR/configs/cls/cls_mv3.yml

96 lines
2.0 KiB
YAML

Global:
use_gpu: true
epoch_num: 100
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/cls/mv3/
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 1000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
label_list: ['0','180']
Architecture:
model_type: cls
algorithm: CLS
Transform:
Backbone:
name: MobileNetV3
scale: 0.35
model_name: small
Neck:
Head:
name: ClsHead
class_dim: 2
Loss:
name: ClsLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: ClsPostProcess
Metric:
name: ClsMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/cls
label_file_list:
- ./train_data/cls/train.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ClsLabelEncode: # Class handling label
- RecAug:
use_tia: False
- RandAugment:
- ClsResizeImg:
image_shape: [3, 48, 192]
- KeepKeys:
keep_keys: ['image', 'label'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 512
drop_last: True
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/cls
label_file_list:
- ./train_data/cls/test.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ClsLabelEncode: # Class handling label
- ClsResizeImg:
image_shape: [3, 48, 192]
- KeepKeys:
keep_keys: ['image', 'label'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 512
num_workers: 4