PaddleOCR/ppocr/utils/save_load.py

146 lines
5.5 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import pickle
import six
import paddle
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
def _mkdir_if_not_exist(path, logger):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def load_dygraph_pretrain(model, logger, path=None, load_static_weights=False):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
if load_static_weights:
pre_state_dict = paddle.static.load_program_state(path)
param_state_dict = {}
model_dict = model.state_dict()
for key in model_dict.keys():
weight_name = model_dict[key].name
weight_name = weight_name.replace('binarize', '').replace(
'thresh', '') # for DB
if weight_name in pre_state_dict.keys():
logger.info('Load weight: {}, shape: {}'.format(
weight_name, pre_state_dict[weight_name].shape))
if 'encoder_rnn' in key:
# delete axis which is 1
pre_state_dict[weight_name] = pre_state_dict[
weight_name].squeeze()
# change axis
if len(pre_state_dict[weight_name].shape) > 1:
pre_state_dict[weight_name] = pre_state_dict[
weight_name].transpose((1, 0))
param_state_dict[key] = pre_state_dict[weight_name]
else:
param_state_dict[key] = model_dict[key]
model.set_dict(param_state_dict)
return
param_state_dict, optim_state_dict = paddle.load(path)
model.set_dict(param_state_dict)
return
def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
"""
load model from checkpoint or pretrained_model
"""
gloabl_config = config['Global']
checkpoints = gloabl_config.get('checkpoints')
pretrained_model = gloabl_config.get('pretrained_model')
best_model_dict = {}
if checkpoints:
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
para_dict, opti_dict = paddle.load(checkpoints)
model.set_dict(para_dict)
if optimizer is not None:
optimizer.set_state_dict(opti_dict)
if os.path.exists(checkpoints + '.states'):
with open(checkpoints + '.states', 'rb') as f:
states_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
best_model_dict = states_dict.get('best_model_dict', {})
if 'epoch' in states_dict:
best_model_dict['start_epoch'] = states_dict['epoch'] + 1
best_model_dict['start_epoch'] = best_model_dict['best_epoch'] + 1
logger.info("resume from {}".format(checkpoints))
elif pretrained_model:
load_static_weights = gloabl_config.get('load_static_weights', False)
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
if not isinstance(load_static_weights, list):
load_static_weights = [load_static_weights] * len(pretrained_model)
for idx, pretrained in enumerate(pretrained_model):
load_static = load_static_weights[idx]
load_dygraph_pretrain(
model, logger, path=pretrained, load_static_weights=load_static)
logger.info("load pretrained model from {}".format(
pretrained_model))
else:
logger.info('train from scratch')
return best_model_dict
def save_model(net,
optimizer,
model_path,
logger,
is_best=False,
prefix='ppocr',
**kwargs):
"""
save model to the target path
"""
_mkdir_if_not_exist(model_path, logger)
model_prefix = os.path.join(model_path, prefix)
paddle.save(net.state_dict(), model_prefix)
paddle.save(optimizer.state_dict(), model_prefix)
# save metric and config
with open(model_prefix + '.states', 'wb') as f:
pickle.dump(kwargs, f, protocol=2)
if is_best:
logger.info('save best model is to {}'.format(model_prefix))
else:
logger.info("save model in {}".format(model_prefix))