PaddleOCR/ppocr/data/rec/img_tools.py

495 lines
15 KiB
Python
Executable File

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import cv2
import numpy as np
import random
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from .text_image_aug.augment import tia_distort, tia_stretch, tia_perspective
def get_bounding_box_rect(pos):
left = min(pos[0])
right = max(pos[0])
top = min(pos[1])
bottom = max(pos[1])
return [left, top, right, bottom]
def resize_norm_img(img, image_shape):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_chinese(img, image_shape):
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
max_wh_ratio = imgW * 1.0 / imgH
h, w = img.shape[0], img.shape[1]
ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, ratio)
imgW = int(32 * max_wh_ratio)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def get_img_data(value):
"""get_img_data"""
if not value:
return None
imgdata = np.frombuffer(value, dtype='uint8')
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
def flag():
"""
flag
"""
return 1 if random.random() > 0.5000001 else -1
def cvtColor(img):
"""
cvtColor
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
delta = 0.001 * random.random() * flag()
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return new_img
def blur(img):
"""
blur
"""
h, w, _ = img.shape
if h > 10 and w > 10:
return cv2.GaussianBlur(img, (5, 5), 1)
else:
return img
def jitter(img):
"""
jitter
"""
w, h, _ = img.shape
if h > 10 and w > 10:
thres = min(w, h)
s = int(random.random() * thres * 0.01)
src_img = img.copy()
for i in range(s):
img[i:, i:, :] = src_img[:w - i, :h - i, :]
return img
else:
return img
def add_gasuss_noise(image, mean=0, var=0.1):
"""
Gasuss noise
"""
noise = np.random.normal(mean, var**0.5, image.shape)
out = image + 0.5 * noise
out = np.clip(out, 0, 255)
out = np.uint8(out)
return out
def get_crop(image):
"""
random crop
"""
h, w, _ = image.shape
top_min = 1
top_max = 8
top_crop = int(random.randint(top_min, top_max))
top_crop = min(top_crop, h - 1)
crop_img = image.copy()
ratio = random.randint(0, 1)
if ratio:
crop_img = crop_img[top_crop:h, :, :]
else:
crop_img = crop_img[0:h - top_crop, :, :]
return crop_img
class Config:
"""
Config
"""
def __init__(self, ):
self.anglex = random.random() * 30
self.angley = random.random() * 15
self.anglez = random.random() * 10
self.fov = 42
self.r = 0
self.shearx = random.random() * 0.3
self.sheary = random.random() * 0.05
self.borderMode = cv2.BORDER_REPLICATE
def make(self, w, h, ang):
"""
make
"""
self.anglex = random.random() * 5 * flag()
self.angley = random.random() * 5 * flag()
self.anglez = -1 * random.random() * int(ang) * flag()
self.fov = 42
self.r = 0
self.shearx = 0
self.sheary = 0
self.borderMode = cv2.BORDER_REPLICATE
self.w = w
self.h = h
self.perspective = True
self.stretch = True
self.distort = True
self.crop = True
self.affine = False
self.reverse = True
self.noise = True
self.jitter = True
self.blur = True
self.color = True
def rad(x):
"""
rad
"""
return x * np.pi / 180
def get_warpR(config):
"""
get_warpR
"""
anglex, angley, anglez, fov, w, h, r = \
config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
if w > 69 and w < 112:
anglex = anglex * 1.5
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
# Homogeneous coordinate transformation matrix
rx = np.array([[1, 0, 0, 0],
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
0,
-np.sin(rad(anglex)),
np.cos(rad(anglex)),
0,
], [0, 0, 0, 1]], np.float32)
ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
[0, 1, 0, 0], [
-np.sin(rad(angley)),
0,
np.cos(rad(angley)),
0,
], [0, 0, 0, 1]], np.float32)
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
r = rx.dot(ry).dot(rz)
# generate 4 points
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
p3 = np.array([0, h, 0, 0], np.float32) - pcenter
p4 = np.array([w, h, 0, 0], np.float32) - pcenter
dst1 = r.dot(p1)
dst2 = r.dot(p2)
dst3 = r.dot(p3)
dst4 = r.dot(p4)
list_dst = np.array([dst1, dst2, dst3, dst4])
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
dst = np.zeros((4, 2), np.float32)
# Project onto the image plane
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
warpR = cv2.getPerspectiveTransform(org, dst)
dst1, dst2, dst3, dst4 = dst
r1 = int(min(dst1[1], dst2[1]))
r2 = int(max(dst3[1], dst4[1]))
c1 = int(min(dst1[0], dst3[0]))
c2 = int(max(dst2[0], dst4[0]))
try:
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
dx = -c1
dy = -r1
T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
ret = T1.dot(warpR)
except:
ratio = 1.0
T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
ret = T1
return ret, (-r1, -c1), ratio, dst
def get_warpAffine(config):
"""
get_warpAffine
"""
anglez = config.anglez
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
return rz
def warp(img, ang):
"""
warp
"""
h, w, _ = img.shape
config = Config()
config.make(w, h, ang)
new_img = img
prob = 0.4
if config.distort:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
try:
new_img = tia_distort(new_img, random.randint(3, 6))
except:
logger.warning(
"Exception occured during tia_distort, pass it...")
if config.stretch:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
try:
new_img = tia_stretch(new_img, random.randint(3, 6))
except:
logger.warning(
"Exception occured during tia_stretch, pass it...")
if config.perspective:
if random.random() <= prob:
try:
new_img = tia_perspective(new_img)
except:
logger.warning(
"Exception occured during tia_perspective, pass it...")
if config.crop:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = get_crop(new_img)
if config.blur:
if random.random() <= prob:
new_img = blur(new_img)
if config.color:
if random.random() <= prob:
new_img = cvtColor(new_img)
if config.jitter:
new_img = jitter(new_img)
if config.noise:
if random.random() <= prob:
new_img = add_gasuss_noise(new_img)
if config.reverse:
if random.random() <= prob:
new_img = 255 - new_img
return new_img
def process_image(img,
image_shape,
label=None,
char_ops=None,
loss_type=None,
max_text_length=None,
tps=None,
infer_mode=False,
distort=False):
if distort:
img = warp(img, 10)
if infer_mode and char_ops.character_type == "ch" and not tps:
norm_img = resize_norm_img_chinese(img, image_shape)
else:
norm_img = resize_norm_img(img, image_shape)
norm_img = norm_img[np.newaxis, :]
if label is not None:
# char_num = char_ops.get_char_num()
text = char_ops.encode(label)
if len(text) == 0 or len(text) > max_text_length:
logger.info(
"Warning in ppocr/data/rec/img_tools.py: Wrong data type."
"Excepted string with length between 1 and {}, but "
"got '{}'. Label is '{}'".format(max_text_length,
len(text), label))
return None
else:
if loss_type == "ctc":
text = text.reshape(-1, 1)
return (norm_img, text)
elif loss_type == "attention":
beg_flag_idx = char_ops.get_beg_end_flag_idx("beg")
end_flag_idx = char_ops.get_beg_end_flag_idx("end")
beg_text = np.append(beg_flag_idx, text)
end_text = np.append(text, end_flag_idx)
beg_text = beg_text.reshape(-1, 1)
end_text = end_text.reshape(-1, 1)
return (norm_img, beg_text, end_text)
else:
assert False, "Unsupport loss_type %s in process_image"\
% loss_type
return (norm_img)
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(image_shape, num_heads, max_text_length, char_num):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
lbl_weight = np.array([int(char_num - 1)] * max_text_length).reshape(
(-1, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
[1, num_heads, 1, 1]) * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
[1, num_heads, 1, 1]) * [-1e9]
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [
lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def process_image_srn(img,
image_shape,
num_heads,
max_text_length,
label=None,
char_ops=None,
loss_type=None):
norm_img = resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
char_num = char_ops.get_char_num()
[lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
srn_other_inputs(image_shape, num_heads, max_text_length,char_num)
if label is not None:
text = char_ops.encode(label)
if len(text) == 0 or len(text) > max_text_length:
return None
else:
if loss_type == "srn":
text_padded = [int(char_num - 1)] * max_text_length
for i in range(len(text)):
text_padded[i] = text[i]
lbl_weight[i] = [1.0]
text_padded = np.array(text_padded)
text = text_padded.reshape(-1, 1)
return (norm_img, text, encoder_word_pos, gsrm_word_pos,
gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight)
else:
assert False, "Unsupport loss_type %s in process_image"\
% loss_type
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)