PaddleOCR/deploy/hubserving/ocr_det/module.py

118 lines
3.8 KiB
Python

# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
sys.path.insert(0, ".")
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import numpy as np
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
from tools.infer.predict_det import TextDetector
@moduleinfo(
name="ocr_det",
version="1.0.0",
summary="ocr detection service",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/text_recognition")
class OCRDet(hub.Module):
def _initialize(self, use_gpu=False, enable_mkldnn=False):
"""
initialize with the necessary elements
"""
from ocr_det.params import read_params
cfg = read_params()
cfg.use_gpu = use_gpu
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
print("use gpu: ", use_gpu)
print("CUDA_VISIBLE_DEVICES: ", _places)
cfg.gpu_mem = 8000
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
cfg.ir_optim = True
cfg.enable_mkldnn = enable_mkldnn
self.text_detector = TextDetector(cfg)
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file.".format(img_path)
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
def predict(self, images=[], paths=[]):
"""
Get the text box in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The result of text detection box and save path of images.
"""
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
all_results = []
for img in predicted_data:
if img is None:
logger.info("error in loading image")
all_results.append([])
continue
dt_boxes, elapse = self.text_detector(img)
logger.info("Predict time : {}".format(elapse))
rec_res_final = []
for dno in range(len(dt_boxes)):
rec_res_final.append({
'text_region': dt_boxes[dno].astype(np.int).tolist()
})
all_results.append(rec_res_final)
return all_results
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.predict(images_decode, **kwargs)
return results
if __name__ == '__main__':
ocr = OCRDet()
image_path = [
'./doc/imgs/11.jpg',
'./doc/imgs/12.jpg',
]
res = ocr.predict(paths=image_path)
print(res)