304 lines
11 KiB
Python
304 lines
11 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn, ParamAttr
|
|
from paddle.nn import functional as F
|
|
import numpy as np
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None,
|
|
name=None):
|
|
super(ConvBNLayer, self).__init__()
|
|
self.conv = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
|
bias_attr=False)
|
|
bn_name = "bn_" + name
|
|
self.bn = nn.BatchNorm(
|
|
out_channels,
|
|
act=act,
|
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
|
moving_mean_name=bn_name + '_mean',
|
|
moving_variance_name=bn_name + '_variance')
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class LocalizationNetwork(nn.Layer):
|
|
def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
|
|
super(LocalizationNetwork, self).__init__()
|
|
self.F = num_fiducial
|
|
F = num_fiducial
|
|
if model_name == "large":
|
|
num_filters_list = [64, 128, 256, 512]
|
|
fc_dim = 256
|
|
else:
|
|
num_filters_list = [16, 32, 64, 128]
|
|
fc_dim = 64
|
|
|
|
self.block_list = []
|
|
for fno in range(0, len(num_filters_list)):
|
|
num_filters = num_filters_list[fno]
|
|
name = "loc_conv%d" % fno
|
|
conv = self.add_sublayer(
|
|
name,
|
|
ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=num_filters,
|
|
kernel_size=3,
|
|
act='relu',
|
|
name=name))
|
|
self.block_list.append(conv)
|
|
if fno == len(num_filters_list) - 1:
|
|
pool = nn.AdaptiveAvgPool2D(1)
|
|
else:
|
|
pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
|
|
in_channels = num_filters
|
|
self.block_list.append(pool)
|
|
name = "loc_fc1"
|
|
stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
|
|
self.fc1 = nn.Linear(
|
|
in_channels,
|
|
fc_dim,
|
|
weight_attr=ParamAttr(
|
|
learning_rate=loc_lr,
|
|
name=name + "_w",
|
|
initializer=nn.initializer.Uniform(-stdv, stdv)),
|
|
bias_attr=ParamAttr(name=name + '.b_0'),
|
|
name=name)
|
|
|
|
# Init fc2 in LocalizationNetwork
|
|
initial_bias = self.get_initial_fiducials()
|
|
initial_bias = initial_bias.reshape(-1)
|
|
name = "loc_fc2"
|
|
param_attr = ParamAttr(
|
|
learning_rate=loc_lr,
|
|
initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
|
|
name=name + "_w")
|
|
bias_attr = ParamAttr(
|
|
learning_rate=loc_lr,
|
|
initializer=nn.initializer.Assign(initial_bias),
|
|
name=name + "_b")
|
|
self.fc2 = nn.Linear(
|
|
fc_dim,
|
|
F * 2,
|
|
weight_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
name=name)
|
|
self.out_channels = F * 2
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Estimating parameters of geometric transformation
|
|
Args:
|
|
image: input
|
|
Return:
|
|
batch_C_prime: the matrix of the geometric transformation
|
|
"""
|
|
B = x.shape[0]
|
|
i = 0
|
|
for block in self.block_list:
|
|
x = block(x)
|
|
x = x.squeeze(axis=2).squeeze(axis=2)
|
|
x = self.fc1(x)
|
|
|
|
x = F.relu(x)
|
|
x = self.fc2(x)
|
|
x = x.reshape(shape=[-1, self.F, 2])
|
|
return x
|
|
|
|
def get_initial_fiducials(self):
|
|
""" see RARE paper Fig. 6 (a) """
|
|
F = self.F
|
|
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
|
|
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
|
|
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
|
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
|
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
|
|
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
|
|
return initial_bias
|
|
|
|
|
|
class GridGenerator(nn.Layer):
|
|
def __init__(self, in_channels, num_fiducial):
|
|
super(GridGenerator, self).__init__()
|
|
self.eps = 1e-6
|
|
self.F = num_fiducial
|
|
|
|
name = "ex_fc"
|
|
initializer = nn.initializer.Constant(value=0.0)
|
|
param_attr = ParamAttr(
|
|
learning_rate=0.0, initializer=initializer, name=name + "_w")
|
|
bias_attr = ParamAttr(
|
|
learning_rate=0.0, initializer=initializer, name=name + "_b")
|
|
self.fc = nn.Linear(
|
|
in_channels,
|
|
6,
|
|
weight_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
name=name)
|
|
|
|
def forward(self, batch_C_prime, I_r_size):
|
|
"""
|
|
Generate the grid for the grid_sampler.
|
|
Args:
|
|
batch_C_prime: the matrix of the geometric transformation
|
|
I_r_size: the shape of the input image
|
|
Return:
|
|
batch_P_prime: the grid for the grid_sampler
|
|
"""
|
|
C = self.build_C_paddle()
|
|
P = self.build_P_paddle(I_r_size)
|
|
|
|
inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
|
|
P_hat_tensor = self.build_P_hat_paddle(
|
|
C, paddle.to_tensor(P)).astype('float32')
|
|
|
|
inv_delta_C_tensor.stop_gradient = True
|
|
P_hat_tensor.stop_gradient = True
|
|
|
|
batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
|
|
|
|
batch_C_ex_part_tensor.stop_gradient = True
|
|
|
|
batch_C_prime_with_zeros = paddle.concat(
|
|
[batch_C_prime, batch_C_ex_part_tensor], axis=1)
|
|
batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
|
|
batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
|
|
return batch_P_prime
|
|
|
|
def build_C_paddle(self):
|
|
""" Return coordinates of fiducial points in I_r; C """
|
|
F = self.F
|
|
ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
|
|
ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
|
|
ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
|
|
ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
|
|
ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
|
|
C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
|
|
return C # F x 2
|
|
|
|
def build_P_paddle(self, I_r_size):
|
|
I_r_height, I_r_width = I_r_size
|
|
I_r_grid_x = (paddle.arange(
|
|
-I_r_width, I_r_width, 2, dtype='float64') + 1.0
|
|
) / paddle.to_tensor(np.array([I_r_width]))
|
|
|
|
I_r_grid_y = (paddle.arange(
|
|
-I_r_height, I_r_height, 2, dtype='float64') + 1.0
|
|
) / paddle.to_tensor(np.array([I_r_height]))
|
|
|
|
# P: self.I_r_width x self.I_r_height x 2
|
|
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
|
|
P = paddle.transpose(P, perm=[1, 0, 2])
|
|
# n (= self.I_r_width x self.I_r_height) x 2
|
|
return P.reshape([-1, 2])
|
|
|
|
def build_inv_delta_C_paddle(self, C):
|
|
""" Return inv_delta_C which is needed to calculate T """
|
|
F = self.F
|
|
hat_eye = paddle.eye(F, dtype='float64') # F x F
|
|
hat_C = paddle.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
|
|
hat_C = (hat_C**2) * paddle.log(hat_C)
|
|
delta_C = paddle.concat( # F+3 x F+3
|
|
[
|
|
paddle.concat(
|
|
[paddle.ones(
|
|
(F, 1), dtype='float64'), C, hat_C], axis=1), # F x F+3
|
|
paddle.concat(
|
|
[
|
|
paddle.zeros(
|
|
(2, 3), dtype='float64'), paddle.transpose(
|
|
C, perm=[1, 0])
|
|
],
|
|
axis=1), # 2 x F+3
|
|
paddle.concat(
|
|
[
|
|
paddle.zeros(
|
|
(1, 3), dtype='float64'), paddle.ones(
|
|
(1, F), dtype='float64')
|
|
],
|
|
axis=1) # 1 x F+3
|
|
],
|
|
axis=0)
|
|
inv_delta_C = paddle.inverse(delta_C)
|
|
return inv_delta_C # F+3 x F+3
|
|
|
|
def build_P_hat_paddle(self, C, P):
|
|
F = self.F
|
|
eps = self.eps
|
|
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
|
|
# P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
|
|
P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
|
|
C_tile = paddle.unsqueeze(C, axis=0) # 1 x F x 2
|
|
P_diff = P_tile - C_tile # n x F x 2
|
|
# rbf_norm: n x F
|
|
rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)
|
|
|
|
# rbf: n x F
|
|
rbf = paddle.multiply(
|
|
paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
|
|
P_hat = paddle.concat(
|
|
[paddle.ones(
|
|
(n, 1), dtype='float64'), P, rbf], axis=1)
|
|
return P_hat # n x F+3
|
|
|
|
def get_expand_tensor(self, batch_C_prime):
|
|
B, H, C = batch_C_prime.shape
|
|
batch_C_prime = batch_C_prime.reshape([B, H * C])
|
|
batch_C_ex_part_tensor = self.fc(batch_C_prime)
|
|
batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
|
|
return batch_C_ex_part_tensor
|
|
|
|
|
|
class TPS(nn.Layer):
|
|
def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
|
|
super(TPS, self).__init__()
|
|
self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
|
|
model_name)
|
|
self.grid_generator = GridGenerator(self.loc_net.out_channels,
|
|
num_fiducial)
|
|
self.out_channels = in_channels
|
|
|
|
def forward(self, image):
|
|
image.stop_gradient = False
|
|
batch_C_prime = self.loc_net(image)
|
|
batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
|
|
batch_P_prime = batch_P_prime.reshape(
|
|
[-1, image.shape[2], image.shape[3], 2])
|
|
batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
|
|
return batch_I_r
|