153 lines
6.0 KiB
Python
153 lines
6.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import logging
|
|
import numpy as np
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
__all__ = ['eval_rec_run', 'test_rec_benchmark']
|
|
|
|
import logging
|
|
|
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
from ppocr.utils.character import cal_predicts_accuracy, cal_predicts_accuracy_srn
|
|
from ppocr.utils.character import convert_rec_label_to_lod
|
|
from ppocr.utils.character import convert_rec_attention_infer_res
|
|
from ppocr.utils.utility import create_module
|
|
import json
|
|
from copy import deepcopy
|
|
import cv2
|
|
from ppocr.data.reader_main import reader_main
|
|
|
|
|
|
def eval_rec_run(exe, config, eval_info_dict, mode):
|
|
"""
|
|
Run evaluation program, return program outputs.
|
|
"""
|
|
char_ops = config['Global']['char_ops']
|
|
total_loss = 0
|
|
total_sample_num = 0
|
|
total_acc_num = 0
|
|
total_batch_num = 0
|
|
if mode == "eval":
|
|
is_remove_duplicate = False
|
|
else:
|
|
is_remove_duplicate = True
|
|
|
|
for data in eval_info_dict['reader']():
|
|
img_num = len(data)
|
|
img_list = []
|
|
label_list = []
|
|
for ino in range(img_num):
|
|
img_list.append(data[ino][0])
|
|
label_list.append(data[ino][1])
|
|
|
|
if config['Global']['loss_type'] != "srn":
|
|
img_list = np.concatenate(img_list, axis=0)
|
|
outs = exe.run(eval_info_dict['program'], \
|
|
feed={'image': img_list}, \
|
|
fetch_list=eval_info_dict['fetch_varname_list'], \
|
|
return_numpy=False)
|
|
preds = np.array(outs[0])
|
|
|
|
if config['Global']['loss_type'] == "attention":
|
|
preds, preds_lod = convert_rec_attention_infer_res(preds)
|
|
else:
|
|
preds_lod = outs[0].lod()[0]
|
|
labels, labels_lod = convert_rec_label_to_lod(label_list)
|
|
acc, acc_num, sample_num = cal_predicts_accuracy(
|
|
char_ops, preds, preds_lod, labels, labels_lod,
|
|
is_remove_duplicate)
|
|
else:
|
|
encoder_word_pos_list = []
|
|
gsrm_word_pos_list = []
|
|
gsrm_slf_attn_bias1_list = []
|
|
gsrm_slf_attn_bias2_list = []
|
|
for ino in range(img_num):
|
|
encoder_word_pos_list.append(data[ino][2])
|
|
gsrm_word_pos_list.append(data[ino][3])
|
|
gsrm_slf_attn_bias1_list.append(data[ino][4])
|
|
gsrm_slf_attn_bias2_list.append(data[ino][5])
|
|
|
|
img_list = np.concatenate(img_list, axis=0)
|
|
label_list = np.concatenate(label_list, axis=0)
|
|
encoder_word_pos_list = np.concatenate(
|
|
encoder_word_pos_list, axis=0).astype(np.int64)
|
|
gsrm_word_pos_list = np.concatenate(
|
|
gsrm_word_pos_list, axis=0).astype(np.int64)
|
|
gsrm_slf_attn_bias1_list = np.concatenate(
|
|
gsrm_slf_attn_bias1_list, axis=0).astype(np.float32)
|
|
gsrm_slf_attn_bias2_list = np.concatenate(
|
|
gsrm_slf_attn_bias2_list, axis=0).astype(np.float32)
|
|
|
|
labels = label_list
|
|
|
|
outs = exe.run(eval_info_dict['program'], \
|
|
feed={'image': img_list, 'encoder_word_pos': encoder_word_pos_list,
|
|
'gsrm_word_pos': gsrm_word_pos_list, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1_list,
|
|
'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2_list}, \
|
|
fetch_list=eval_info_dict['fetch_varname_list'], \
|
|
return_numpy=False)
|
|
preds = np.array(outs[0])
|
|
acc, acc_num, sample_num = cal_predicts_accuracy_srn(
|
|
char_ops, preds, labels, config['Global']['max_text_length'])
|
|
|
|
total_acc_num += acc_num
|
|
total_sample_num += sample_num
|
|
#logger.info("eval batch id: {}, acc: {}".format(total_batch_num, acc))
|
|
total_batch_num += 1
|
|
avg_acc = total_acc_num * 1.0 / total_sample_num
|
|
metrics = {'avg_acc': avg_acc, "total_acc_num": total_acc_num, \
|
|
"total_sample_num": total_sample_num}
|
|
return metrics
|
|
|
|
|
|
def test_rec_benchmark(exe, config, eval_info_dict):
|
|
"""
|
|
eval rec benchmark
|
|
"""
|
|
eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', \
|
|
'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
|
|
eval_data_dir = config['TestReader']['lmdb_sets_dir']
|
|
total_evaluation_data_number = 0
|
|
total_correct_number = 0
|
|
eval_data_acc_info = {}
|
|
for eval_data in eval_data_list:
|
|
config['TestReader']['lmdb_sets_dir'] = \
|
|
eval_data_dir + "/" + eval_data
|
|
eval_reader = reader_main(config=config, mode="test")
|
|
eval_info_dict['reader'] = eval_reader
|
|
metrics = eval_rec_run(exe, config, eval_info_dict, "test")
|
|
total_evaluation_data_number += metrics['total_sample_num']
|
|
total_correct_number += metrics['total_acc_num']
|
|
eval_data_acc_info[eval_data] = metrics
|
|
|
|
avg_acc = total_correct_number * 1.0 / total_evaluation_data_number
|
|
logger.info('-' * 50)
|
|
strs = ""
|
|
for eval_data in eval_data_list:
|
|
eval_acc = eval_data_acc_info[eval_data]['avg_acc']
|
|
strs += "\n {}, accuracy:{:.6f}".format(eval_data, eval_acc)
|
|
strs += "\n average, accuracy:{:.6f}".format(avg_acc)
|
|
logger.info(strs)
|
|
logger.info('-' * 50)
|