PaddleOCR/tools/eval_utils/eval_rec_utils.py

153 lines
6.0 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import paddle.fluid as fluid
__all__ = ['eval_rec_run', 'test_rec_benchmark']
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
from ppocr.utils.character import cal_predicts_accuracy, cal_predicts_accuracy_srn
from ppocr.utils.character import convert_rec_label_to_lod
from ppocr.utils.character import convert_rec_attention_infer_res
from ppocr.utils.utility import create_module
import json
from copy import deepcopy
import cv2
from ppocr.data.reader_main import reader_main
def eval_rec_run(exe, config, eval_info_dict, mode):
"""
Run evaluation program, return program outputs.
"""
char_ops = config['Global']['char_ops']
total_loss = 0
total_sample_num = 0
total_acc_num = 0
total_batch_num = 0
if mode == "eval":
is_remove_duplicate = False
else:
is_remove_duplicate = True
for data in eval_info_dict['reader']():
img_num = len(data)
img_list = []
label_list = []
for ino in range(img_num):
img_list.append(data[ino][0])
label_list.append(data[ino][1])
if config['Global']['loss_type'] != "srn":
img_list = np.concatenate(img_list, axis=0)
outs = exe.run(eval_info_dict['program'], \
feed={'image': img_list}, \
fetch_list=eval_info_dict['fetch_varname_list'], \
return_numpy=False)
preds = np.array(outs[0])
if config['Global']['loss_type'] == "attention":
preds, preds_lod = convert_rec_attention_infer_res(preds)
else:
preds_lod = outs[0].lod()[0]
labels, labels_lod = convert_rec_label_to_lod(label_list)
acc, acc_num, sample_num = cal_predicts_accuracy(
char_ops, preds, preds_lod, labels, labels_lod,
is_remove_duplicate)
else:
encoder_word_pos_list = []
gsrm_word_pos_list = []
gsrm_slf_attn_bias1_list = []
gsrm_slf_attn_bias2_list = []
for ino in range(img_num):
encoder_word_pos_list.append(data[ino][2])
gsrm_word_pos_list.append(data[ino][3])
gsrm_slf_attn_bias1_list.append(data[ino][4])
gsrm_slf_attn_bias2_list.append(data[ino][5])
img_list = np.concatenate(img_list, axis=0)
label_list = np.concatenate(label_list, axis=0)
encoder_word_pos_list = np.concatenate(
encoder_word_pos_list, axis=0).astype(np.int64)
gsrm_word_pos_list = np.concatenate(
gsrm_word_pos_list, axis=0).astype(np.int64)
gsrm_slf_attn_bias1_list = np.concatenate(
gsrm_slf_attn_bias1_list, axis=0).astype(np.float32)
gsrm_slf_attn_bias2_list = np.concatenate(
gsrm_slf_attn_bias2_list, axis=0).astype(np.float32)
labels = label_list
outs = exe.run(eval_info_dict['program'], \
feed={'image': img_list, 'encoder_word_pos': encoder_word_pos_list,
'gsrm_word_pos': gsrm_word_pos_list, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1_list,
'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2_list}, \
fetch_list=eval_info_dict['fetch_varname_list'], \
return_numpy=False)
preds = np.array(outs[0])
acc, acc_num, sample_num = cal_predicts_accuracy_srn(
char_ops, preds, labels, config['Global']['max_text_length'])
total_acc_num += acc_num
total_sample_num += sample_num
#logger.info("eval batch id: {}, acc: {}".format(total_batch_num, acc))
total_batch_num += 1
avg_acc = total_acc_num * 1.0 / total_sample_num
metrics = {'avg_acc': avg_acc, "total_acc_num": total_acc_num, \
"total_sample_num": total_sample_num}
return metrics
def test_rec_benchmark(exe, config, eval_info_dict):
"""
eval rec benchmark
"""
eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', \
'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
eval_data_dir = config['TestReader']['lmdb_sets_dir']
total_evaluation_data_number = 0
total_correct_number = 0
eval_data_acc_info = {}
for eval_data in eval_data_list:
config['TestReader']['lmdb_sets_dir'] = \
eval_data_dir + "/" + eval_data
eval_reader = reader_main(config=config, mode="test")
eval_info_dict['reader'] = eval_reader
metrics = eval_rec_run(exe, config, eval_info_dict, "test")
total_evaluation_data_number += metrics['total_sample_num']
total_correct_number += metrics['total_acc_num']
eval_data_acc_info[eval_data] = metrics
avg_acc = total_correct_number * 1.0 / total_evaluation_data_number
logger.info('-' * 50)
strs = ""
for eval_data in eval_data_list:
eval_acc = eval_data_acc_info[eval_data]['avg_acc']
strs += "\n {}, accuracy:{:.6f}".format(eval_data, eval_acc)
strs += "\n average, accuracy:{:.6f}".format(avg_acc)
logger.info(strs)
logger.info('-' * 50)