30 lines
1.4 KiB
Bash
30 lines
1.4 KiB
Bash
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
|
||
# 执行目录:需说明
|
||
cd PaddleOCR
|
||
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
|
||
python3.7 -m pip install -r requirements.txt
|
||
# 2 拷贝该模型需要数据、预训练模型
|
||
wget -p ./tain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../
|
||
wget -p ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
|
||
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
|
||
|
||
model_mode_list=(det_mv3_db det_r50_vd_east)
|
||
fp_item_list=(fp32)
|
||
bs_list=(256 128)
|
||
for model_mode in ${model_mode_list[@]}; do
|
||
for fp_item in ${fp_item_list[@]}; do
|
||
for bs_item in ${bs_list[@]}; do
|
||
echo "index is speed, 1gpus, begin, ${model_name}"
|
||
run_mode=sp
|
||
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
|
||
sleep 60
|
||
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
|
||
run_mode=mp
|
||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
|
||
sleep 60
|
||
done
|
||
done
|
||
done
|
||
|
||
|