PaddleOCR/tools/infer/predict_eval.py

93 lines
3.4 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
import predict_system
import copy
import numpy as np
import math
import time
import json
import os
from PIL import Image, ImageDraw, ImageFont
from tools.infer.utility import draw_ocr
from ppocr.utils.utility import get_image_file_list
if __name__ == "__main__":
args = utility.parse_args()
text_sys = predict_system.TextSystem(args)
if not os.path.exists(args.image_dir):
raise Exception("{} not exists !!".format(args.image_dir))
image_file_list = get_image_file_list(args.image_dir)
total_time_all = 0
count = 0
save_path = "./inference_output/predict.txt"
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
fout = open(save_path, "wb")
for image_name in image_file_list:
image_file = image_name
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
count += 1
total_time = 0
starttime = time.time()
dt_boxes, rec_res = text_sys(img)
elapse = time.time() - starttime
total_time_all += elapse
print("Predict time of %s(%d): %.3fs" % (image_file, count, elapse))
dt_num = len(dt_boxes)
bbox_list = []
for dno in range(dt_num):
box = dt_boxes[dno]
text, score = rec_res[dno]
points = []
for tno in range(len(box)):
points.append([box[tno][0] * 1.0, box[tno][1] * 1.0])
bbox_list.append({
"transcription": text,
"points": points,
"scores": score * 1.0
})
# draw predict box and text in image
# and save drawed image in save_path
image = Image.open(image_file)
boxes, txts, scores = [], [], []
for dic in bbox_list:
boxes.append(dic['points'])
txts.append(dic['transcription'])
scores.append(round(dic['scores'], 3))
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
draw_img_save = os.path.join(
os.path.dirname(save_path), "inference_draw",
os.path.basename(image_file))
if not os.path.exists(os.path.dirname(draw_img_save)):
os.makedirs(os.path.dirname(draw_img_save))
cv2.imwrite(draw_img_save, new_img[:, :, ::-1])
print("drawed img saved in {}".format(draw_img_save))
# save predicted results in txt file
otstr = image_name + "\t" + json.dumps(bbox_list) + "\n"
fout.write(otstr.encode('utf-8'))
avg_time = total_time_all / count
logger.info("avg_time: {0}".format(avg_time))
logger.info("avg_fps: {0}".format(1.0 / avg_time))
fout.close()