238 lines
8.6 KiB
Bash
238 lines
8.6 KiB
Bash
#!/bin/bash
|
|
FILENAME=$1
|
|
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
|
|
MODE=$2
|
|
|
|
dataline=$(cat ${FILENAME})
|
|
|
|
# parser params
|
|
IFS=$'\n'
|
|
lines=(${dataline})
|
|
function func_parser_key(){
|
|
strs=$1
|
|
IFS=":"
|
|
array=(${strs})
|
|
tmp=${array[0]}
|
|
echo ${tmp}
|
|
}
|
|
function func_parser_value(){
|
|
strs=$1
|
|
IFS=":"
|
|
array=(${strs})
|
|
tmp=${array[1]}
|
|
echo ${tmp}
|
|
}
|
|
function status_check(){
|
|
last_status=$1 # the exit code
|
|
run_command=$2
|
|
run_log=$3
|
|
if [ $last_status -eq 0 ]; then
|
|
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
|
else
|
|
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
|
fi
|
|
}
|
|
|
|
IFS=$'\n'
|
|
# The training params
|
|
model_name=$(func_parser_value "${lines[0]}")
|
|
python=$(func_parser_value "${lines[1]}")
|
|
gpu_list=$(func_parser_value "${lines[2]}")
|
|
autocast_list=$(func_parser_value "${lines[3]}")
|
|
autocast_key=$(func_parser_key "${lines[3]}")
|
|
epoch_key=$(func_parser_key "${lines[4]}")
|
|
epoch_num=$(func_parser_value "${lines[4]}")
|
|
save_model_key=$(func_parser_key "${lines[5]}")
|
|
train_batch_key=$(func_parser_key "${lines[6]}")
|
|
train_use_gpu_key=$(func_parser_key "${lines[7]}")
|
|
pretrain_model_key=$(func_parser_key "${lines[8]}")
|
|
pretrain_model_value=$(func_parser_value "${lines[8]}")
|
|
|
|
trainer_list=$(func_parser_value "${lines[9]}")
|
|
norm_trainer=$(func_parser_value "${lines[10]}")
|
|
pact_trainer=$(func_parser_value "${lines[11]}")
|
|
fpgm_trainer=$(func_parser_value "${lines[12]}")
|
|
distill_trainer=$(func_parser_value "${lines[13]}")
|
|
|
|
eval_py=$(func_parser_value "${lines[14]}")
|
|
|
|
save_infer_key=$(func_parser_key "${lines[15]}")
|
|
export_weight=$(func_parser_key "${lines[16]}")
|
|
norm_export=$(func_parser_value "${lines[17]}")
|
|
pact_export=$(func_parser_value "${lines[18]}")
|
|
fpgm_export=$(func_parser_value "${lines[19]}")
|
|
distill_export=$(func_parser_value "${lines[20]}")
|
|
|
|
inference_py=$(func_parser_value "${lines[21]}")
|
|
use_gpu_key=$(func_parser_key "${lines[22]}")
|
|
use_gpu_list=$(func_parser_value "${lines[22]}")
|
|
use_mkldnn_key=$(func_parser_key "${lines[23]}")
|
|
use_mkldnn_list=$(func_parser_value "${lines[23]}")
|
|
cpu_threads_key=$(func_parser_key "${lines[24]}")
|
|
cpu_threads_list=$(func_parser_value "${lines[24]}")
|
|
batch_size_key=$(func_parser_key "${lines[25]}")
|
|
batch_size_list=$(func_parser_value "${lines[25]}")
|
|
use_trt_key=$(func_parser_key "${lines[26]}")
|
|
use_trt_list=$(func_parser_value "${lines[26]}")
|
|
precision_key=$(func_parser_key "${lines[27]}")
|
|
precision_list=$(func_parser_value "${lines[27]}")
|
|
infer_model_key=$(func_parser_key "${lines[28]}")
|
|
infer_model=$(func_parser_value "${lines[28]}")
|
|
image_dir_key=$(func_parser_key "${lines[29]}")
|
|
infer_img_dir=$(func_parser_value "${lines[29]}")
|
|
save_log_key=$(func_parser_key "${lines[30]}")
|
|
|
|
LOG_PATH="./test/output"
|
|
mkdir -p ${LOG_PATH}
|
|
status_log="${LOG_PATH}/results.log"
|
|
|
|
|
|
function func_inference(){
|
|
IFS='|'
|
|
_python=$1
|
|
_script=$2
|
|
_model_dir=$3
|
|
_log_path=$4
|
|
_img_dir=$5
|
|
|
|
# inference
|
|
for use_gpu in ${use_gpu_list[*]}; do
|
|
if [ ${use_gpu} = "False" ]; then
|
|
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
|
for threads in ${cpu_threads_list[*]}; do
|
|
for batch_size in ${batch_size_list[*]}; do
|
|
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
|
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
|
|
eval $command
|
|
status_check $? "${command}" "${status_log}"
|
|
done
|
|
done
|
|
done
|
|
else
|
|
for use_trt in ${use_trt_list[*]}; do
|
|
for precision in ${precision_list[*]}; do
|
|
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
|
|
continue
|
|
fi
|
|
for batch_size in ${batch_size_list[*]}; do
|
|
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
|
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
|
|
eval $command
|
|
status_check $? "${command}" "${status_log}"
|
|
done
|
|
done
|
|
done
|
|
fi
|
|
done
|
|
}
|
|
|
|
if [ ${MODE} != "infer" ]; then
|
|
|
|
IFS="|"
|
|
for gpu in ${gpu_list[*]}; do
|
|
use_gpu=True
|
|
if [ ${gpu} = "-1" ];then
|
|
use_gpu=False
|
|
env=""
|
|
elif [ ${#gpu} -le 1 ];then
|
|
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
|
eval ${env}
|
|
elif [ ${#gpu} -le 15 ];then
|
|
IFS=","
|
|
array=(${gpu})
|
|
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
|
IFS="|"
|
|
else
|
|
IFS=";"
|
|
array=(${gpu})
|
|
ips=${array[0]}
|
|
gpu=${array[1]}
|
|
IFS="|"
|
|
env=" "
|
|
fi
|
|
for autocast in ${autocast_list[*]}; do
|
|
for trainer in ${trainer_list[*]}; do
|
|
if [ ${trainer} = "pact" ]; then
|
|
run_train=${pact_trainer}
|
|
run_export=${pact_export}
|
|
elif [ ${trainer} = "fpgm" ]; then
|
|
run_train=${fpgm_trainer}
|
|
run_export=${fpgm_export}
|
|
elif [ ${trainer} = "distill" ]; then
|
|
run_train=${distill_trainer}
|
|
run_export=${distill_export}
|
|
else
|
|
run_train=${norm_trainer}
|
|
run_export=${norm_export}
|
|
fi
|
|
|
|
if [ ${run_train} = "null" ]; then
|
|
continue
|
|
fi
|
|
if [ ${run_export} = "null" ]; then
|
|
continue
|
|
fi
|
|
|
|
# not set autocast when autocast is null
|
|
if [ ${autocast} = "null" ]; then
|
|
set_autocast=" "
|
|
else
|
|
set_autocast="${autocast_key}=${autocast}"
|
|
fi
|
|
# not set epoch when whole_train_infer
|
|
if [ ${MODE} != "whole_train_infer" ]; then
|
|
set_epoch="${epoch_key}=${epoch_num}"
|
|
else
|
|
set_epoch=" "
|
|
fi
|
|
# set pretrain
|
|
if [ ${pretrain_model_value} != "null" ]; then
|
|
set_pretrain="${pretrain_model_key}=${pretrain_model_value}"
|
|
else
|
|
set_pretrain=" "
|
|
fi
|
|
|
|
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
|
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
|
cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
|
|
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
|
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
|
|
else # train with multi-machine
|
|
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast}"
|
|
fi
|
|
# run train
|
|
eval $cmd
|
|
status_check $? "${cmd}" "${status_log}"
|
|
|
|
# run eval
|
|
eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest"
|
|
eval $eval_cmd
|
|
status_check $? "${eval_cmd}" "${status_log}"
|
|
|
|
# run export model
|
|
save_infer_path="${save_log}"
|
|
export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/latest ${save_infer_key}=${save_infer_path}"
|
|
eval $export_cmd
|
|
status_check $? "${export_cmd}" "${status_log}"
|
|
|
|
#run inference
|
|
eval $env
|
|
save_infer_path="${save_log}"
|
|
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
|
|
eval "unset CUDA_VISIBLE_DEVICES"
|
|
done
|
|
done
|
|
done
|
|
|
|
else
|
|
GPUID=$3
|
|
if [ ${#GPUID} -le 0 ];then
|
|
env=" "
|
|
else
|
|
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
|
fi
|
|
echo $env
|
|
#run inference
|
|
func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}"
|
|
fi
|