PaddleOCR/test/test.sh

238 lines
8.6 KiB
Bash

#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2
dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function status_check(){
last_status=$1 # the exit code
run_command=$2
run_log=$3
if [ $last_status -eq 0 ]; then
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
else
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
fi
}
IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[0]}")
python=$(func_parser_value "${lines[1]}")
gpu_list=$(func_parser_value "${lines[2]}")
autocast_list=$(func_parser_value "${lines[3]}")
autocast_key=$(func_parser_key "${lines[3]}")
epoch_key=$(func_parser_key "${lines[4]}")
epoch_num=$(func_parser_value "${lines[4]}")
save_model_key=$(func_parser_key "${lines[5]}")
train_batch_key=$(func_parser_key "${lines[6]}")
train_use_gpu_key=$(func_parser_key "${lines[7]}")
pretrain_model_key=$(func_parser_key "${lines[8]}")
pretrain_model_value=$(func_parser_value "${lines[8]}")
trainer_list=$(func_parser_value "${lines[9]}")
norm_trainer=$(func_parser_value "${lines[10]}")
pact_trainer=$(func_parser_value "${lines[11]}")
fpgm_trainer=$(func_parser_value "${lines[12]}")
distill_trainer=$(func_parser_value "${lines[13]}")
eval_py=$(func_parser_value "${lines[14]}")
save_infer_key=$(func_parser_key "${lines[15]}")
export_weight=$(func_parser_key "${lines[16]}")
norm_export=$(func_parser_value "${lines[17]}")
pact_export=$(func_parser_value "${lines[18]}")
fpgm_export=$(func_parser_value "${lines[19]}")
distill_export=$(func_parser_value "${lines[20]}")
inference_py=$(func_parser_value "${lines[21]}")
use_gpu_key=$(func_parser_key "${lines[22]}")
use_gpu_list=$(func_parser_value "${lines[22]}")
use_mkldnn_key=$(func_parser_key "${lines[23]}")
use_mkldnn_list=$(func_parser_value "${lines[23]}")
cpu_threads_key=$(func_parser_key "${lines[24]}")
cpu_threads_list=$(func_parser_value "${lines[24]}")
batch_size_key=$(func_parser_key "${lines[25]}")
batch_size_list=$(func_parser_value "${lines[25]}")
use_trt_key=$(func_parser_key "${lines[26]}")
use_trt_list=$(func_parser_value "${lines[26]}")
precision_key=$(func_parser_key "${lines[27]}")
precision_list=$(func_parser_value "${lines[27]}")
infer_model_key=$(func_parser_key "${lines[28]}")
infer_model=$(func_parser_value "${lines[28]}")
image_dir_key=$(func_parser_key "${lines[29]}")
infer_img_dir=$(func_parser_value "${lines[29]}")
save_log_key=$(func_parser_key "${lines[30]}")
LOG_PATH="./test/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"
function func_inference(){
IFS='|'
_python=$1
_script=$2
_model_dir=$3
_log_path=$4
_img_dir=$5
# inference
for use_gpu in ${use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ]; then
for use_mkldnn in ${use_mkldnn_list[*]}; do
for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
eval $command
status_check $? "${command}" "${status_log}"
done
done
done
else
for use_trt in ${use_trt_list[*]}; do
for precision in ${precision_list[*]}; do
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
continue
fi
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
eval $command
status_check $? "${command}" "${status_log}"
done
done
done
fi
done
}
if [ ${MODE} != "infer" ]; then
IFS="|"
for gpu in ${gpu_list[*]}; do
use_gpu=True
if [ ${gpu} = "-1" ];then
use_gpu=False
env=""
elif [ ${#gpu} -le 1 ];then
env="export CUDA_VISIBLE_DEVICES=${gpu}"
eval ${env}
elif [ ${#gpu} -le 15 ];then
IFS=","
array=(${gpu})
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
IFS="|"
else
IFS=";"
array=(${gpu})
ips=${array[0]}
gpu=${array[1]}
IFS="|"
env=" "
fi
for autocast in ${autocast_list[*]}; do
for trainer in ${trainer_list[*]}; do
if [ ${trainer} = "pact" ]; then
run_train=${pact_trainer}
run_export=${pact_export}
elif [ ${trainer} = "fpgm" ]; then
run_train=${fpgm_trainer}
run_export=${fpgm_export}
elif [ ${trainer} = "distill" ]; then
run_train=${distill_trainer}
run_export=${distill_export}
else
run_train=${norm_trainer}
run_export=${norm_export}
fi
if [ ${run_train} = "null" ]; then
continue
fi
if [ ${run_export} = "null" ]; then
continue
fi
# not set autocast when autocast is null
if [ ${autocast} = "null" ]; then
set_autocast=" "
else
set_autocast="${autocast_key}=${autocast}"
fi
# not set epoch when whole_train_infer
if [ ${MODE} != "whole_train_infer" ]; then
set_epoch="${epoch_key}=${epoch_num}"
else
set_epoch=" "
fi
# set pretrain
if [ ${pretrain_model_value} != "null" ]; then
set_pretrain="${pretrain_model_key}=${pretrain_model_value}"
else
set_pretrain=" "
fi
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast}"
fi
# run train
eval $cmd
status_check $? "${cmd}" "${status_log}"
# run eval
eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest"
eval $eval_cmd
status_check $? "${eval_cmd}" "${status_log}"
# run export model
save_infer_path="${save_log}"
export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/latest ${save_infer_key}=${save_infer_path}"
eval $export_cmd
status_check $? "${export_cmd}" "${status_log}"
#run inference
eval $env
save_infer_path="${save_log}"
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
eval "unset CUDA_VISIBLE_DEVICES"
done
done
done
else
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
echo $env
#run inference
func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}"
fi