PaddleOCR/docker/hubserving/readme.md

56 lines
2.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Docker化部署服务
在日常项目应用中相信大家一般都会希望能通过Docker技术把PaddleOCR服务打包成一个镜像以便在Docker或k8s环境里快速发布上线使用。
本文将提供一些标准化的代码来实现这样的目标。大家通过如下步骤可以把PaddleOCR项目快速发布成可调用的Restful API服务。目前暂时先实现了基于HubServing模式的部署后续作者计划增加PaddleServing模式的部署
## 1.实施前提准备
需要先完成如下基本组件的安装:
a. Docker环境
b. 显卡驱动和CUDA 10.0+GPU
c. NVIDIA Container ToolkitGPUDocker 19.03以上版本可以跳过此步)
d. cuDNN 7.6+GPU
## 2.制作镜像
a.下载PaddleOCR项目代码
```
git clone https://github.com/PaddlePaddle/PaddleOCR.git
```
b.切换至Dockerfile目录需要区分cpu或gpu版本下文以cpu为例gpu版本需要替换一下关键字即可
```
cd docker/cpu
```
c.生成镜像
```
docker build -t paddleocr:cpu .
```
## 3.启动Docker容器
a. CPU 版本
```
sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu
```
b. GPU 版本 (通过NVIDIA Container Toolkit)
```
sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu
```
c. GPU 版本 (Docker 19.03以上版本,可以直接用如下命令)
```
sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu
```
d. 检查服务运行情况出现Successfully installed ocr_system和Running on http://0.0.0.0:8866/等信息,表示运行成功)
```
docker logs -f paddle_ocr
```
## 4.测试服务
a. 计算待识别图片的Base64编码如果只是测试一下效果可以通过免费的在线工具实现http://tool.chinaz.com/tools/imgtobase/
b. 发送服务请求可参见sample_request.txt中的值
```
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"填入图片Base64编码(需要删除'data:image/jpg;base64,'\"]}" http://localhost:8866/predict/ocr_system
```
c. 返回结果(如果调用成功,会返回如下结果)
```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
```