PaddleOCR/ppocr/data/det/dataset_traversal.py

112 lines
4.0 KiB
Python

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import math
import random
import functools
import numpy as np
import cv2
import string
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import create_module
from ppocr.utils.utility import get_image_file_list
import time
class TrainReader(object):
def __init__(self, params):
self.num_workers = params['num_workers']
self.label_file_path = params['label_file_path']
self.batch_size = params['train_batch_size_per_card']
assert 'process_function' in params,\
"absence process_function in Reader"
self.process = create_module(params['process_function'])(params)
def __call__(self, process_id):
def sample_iter_reader():
with open(self.label_file_path, "rb") as fin:
label_infor_list = fin.readlines()
img_num = len(label_infor_list)
img_id_list = list(range(img_num))
random.shuffle(img_id_list)
if sys.platform == "win32":
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
for img_id in range(process_id, img_num, self.num_workers):
label_infor = label_infor_list[img_id_list[img_id]]
outs = self.process(label_infor)
if outs is None:
continue
yield outs
def batch_iter_reader():
batch_outs = []
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
if len(batch_outs) != 0:
yield batch_outs
return batch_iter_reader
class EvalTestReader(object):
def __init__(self, params):
self.params = params
assert 'process_function' in params,\
"absence process_function in EvalTestReader"
def __call__(self, mode):
process_function = create_module(self.params['process_function'])(
self.params)
batch_size = self.params['test_batch_size_per_card']
img_list = []
if mode != "test":
img_set_dir = self.params['img_set_dir']
img_name_list_path = self.params['label_file_path']
with open(img_name_list_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
img_name = line.decode().strip("\n").split("\t")[0]
img_path = os.path.join(img_set_dir, img_name)
img_list.append(img_path)
else:
img_path = self.params['infer_img']
img_list = get_image_file_list(img_path)
def batch_iter_reader():
batch_outs = []
for img_path in img_list:
img = cv2.imread(img_path)
if img is None:
logger.info("load image error:" + img_path)
continue
outs = process_function(img)
outs.append(img_path)
batch_outs.append(outs)
if len(batch_outs) == batch_size:
yield batch_outs
batch_outs = []
if len(batch_outs) != 0:
yield batch_outs
return batch_iter_reader