PaddleOCR/configs/det/det_r50_vd_sast_icdar15.yml

110 lines
2.8 KiB
YAML
Executable File

Global:
use_gpu: true
epoch_num: 5000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/sast_r50_vd_ic15/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/sast_r50_vd_ic15/predicts_sast.txt
Architecture:
model_type: det
algorithm: SAST
Transform:
Backbone:
name: ResNet_SAST
layers: 50
Neck:
name: SASTFPN
with_cab: True
Head:
name: SASTHead
Loss:
name: SASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: SASTPostProcess
score_thresh: 0.5
sample_pts_num: 2
nms_thresh: 0.2
expand_scale: 1.0
shrink_ratio_of_width: 0.3
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list: [./train_data/icdar2013/train_label_json.txt, ./train_data/icdar2015/train_label_json.txt, ./train_data/icdar17_mlt_latin/train_label_json.txt, ./train_data/coco_text_icdar_4pts/train_label_json.txt]
ratio_list: [0.1, 0.45, 0.3, 0.15]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- SASTProcessTrain:
image_shape: [512, 512]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
- KeepKeys:
keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
resize_long: 1536
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2