From 484465ca1b86dc2c4279d15ac865a3dbb522f7f0 Mon Sep 17 00:00:00 2001 From: Kexin Zhao Date: Sat, 7 Mar 2020 23:25:04 -0800 Subject: [PATCH] add docstring --- examples/waveflow/utils.py | 49 ++++++++++++++ parakeet/models/waveflow/data.py | 1 + parakeet/models/waveflow/waveflow.py | 68 ++++++++++++++++++++ parakeet/models/waveflow/waveflow_modules.py | 38 +++++++++++ 4 files changed, 156 insertions(+) diff --git a/examples/waveflow/utils.py b/examples/waveflow/utils.py index da9b4ba..b899073 100644 --- a/examples/waveflow/utils.py +++ b/examples/waveflow/utils.py @@ -109,6 +109,16 @@ def add_yaml_config(config): def load_latest_checkpoint(checkpoint_dir, rank=0): + """Get the iteration number corresponding to the latest saved checkpoint + + Args: + checkpoint_dir (str): the directory where checkpoint is saved. + rank (int, optional): the rank of the process in multi-process setting. + Defaults to 0. + + Returns: + int: the latest iteration number. + """ checkpoint_path = os.path.join(checkpoint_dir, "checkpoint") # Create checkpoint index file if not exist. if (not os.path.isfile(checkpoint_path)) and rank == 0: @@ -129,6 +139,15 @@ def load_latest_checkpoint(checkpoint_dir, rank=0): def save_latest_checkpoint(checkpoint_dir, iteration): + """Save the iteration number of the latest model to be checkpointed. + + Args: + checkpoint_dir (str): the directory where checkpoint is saved. + iteration (int): the latest iteration number. + + Returns: + None + """ checkpoint_path = os.path.join(checkpoint_dir, "checkpoint") # Update the latest checkpoint index. with open(checkpoint_path, "w") as handle: @@ -142,6 +161,24 @@ def load_parameters(checkpoint_dir, iteration=None, file_path=None, dtype="float32"): + """Load a specific model checkpoint from disk. + + Args: + checkpoint_dir (str): the directory where checkpoint is saved. + rank (int): the rank of the process in multi-process setting. + model (obj): model to load parameters. + optimizer (obj, optional): optimizer to load states if needed. + Defaults to None. + iteration (int, optional): if specified, load the specific checkpoint, + if not specified, load the latest one. Defaults to None. + file_path (str, optional): if specified, load the checkpoint + stored in the file_path. Defaults to None. + dtype (str, optional): precision of the model parameters. + Defaults to float32. + + Returns: + None + """ if file_path is None: if iteration is None: iteration = load_latest_checkpoint(checkpoint_dir, rank) @@ -165,6 +202,18 @@ def load_parameters(checkpoint_dir, def save_latest_parameters(checkpoint_dir, iteration, model, optimizer=None): + """Checkpoint the latest trained model parameters. + + Args: + checkpoint_dir (str): the directory where checkpoint is saved. + iteration (int): the latest iteration number. + model (obj): model to be checkpointed. + optimizer (obj, optional): optimizer to be checkpointed. + Defaults to None. + + Returns: + None + """ file_path = "{}/step-{}".format(checkpoint_dir, iteration) model_dict = model.state_dict() dg.save_dygraph(model_dict, file_path) diff --git a/parakeet/models/waveflow/data.py b/parakeet/models/waveflow/data.py index 83438f7..33e2ee5 100644 --- a/parakeet/models/waveflow/data.py +++ b/parakeet/models/waveflow/data.py @@ -80,6 +80,7 @@ class Subset(DatasetMixin): # whole audio for valid set pass else: + # Randomly crop segment_length from audios in the training set. # audio shape: [len] if audio.shape[0] >= segment_length: max_audio_start = audio.shape[0] - segment_length diff --git a/parakeet/models/waveflow/waveflow.py b/parakeet/models/waveflow/waveflow.py index 4ef1411..101bb66 100644 --- a/parakeet/models/waveflow/waveflow.py +++ b/parakeet/models/waveflow/waveflow.py @@ -28,6 +28,25 @@ from .waveflow_modules import WaveFlowLoss, WaveFlowModule class WaveFlow(): + """Wrapper class of WaveFlow model that supports multiple APIs. + + This module provides APIs for model building, training, validation, + inference, benchmarking, and saving. + + Args: + config (obj): config info. + checkpoint_dir (str): path for checkpointing. + parallel (bool, optional): whether use multiple GPUs for training. + Defaults to False. + rank (int, optional): the rank of the process in a multi-process + scenario. Defaults to 0. + nranks (int, optional): the total number of processes. Defaults to 1. + tb_logger (obj, optional): logger to visualize metrics. + Defaults to None. + + Returns: + WaveFlow + """ def __init__(self, config, checkpoint_dir, @@ -44,6 +63,15 @@ class WaveFlow(): self.dtype = "float16" if config.use_fp16 else "float32" def build(self, training=True): + """Initialize the model. + + Args: + training (bool, optional): Whether the model is built for training or inference. + Defaults to True. + + Returns: + None + """ config = self.config dataset = LJSpeech(config, self.nranks, self.rank) self.trainloader = dataset.trainloader @@ -99,6 +127,14 @@ class WaveFlow(): self.waveflow = waveflow def train_step(self, iteration): + """Train the model for one step. + + Args: + iteration (int): current iteration number. + + Returns: + None + """ self.waveflow.train() start_time = time.time() @@ -135,6 +171,14 @@ class WaveFlow(): @dg.no_grad def valid_step(self, iteration): + """Run the model on the validation dataset. + + Args: + iteration (int): current iteration number. + + Returns: + None + """ self.waveflow.eval() tb = self.tb_logger @@ -167,6 +211,14 @@ class WaveFlow(): @dg.no_grad def infer(self, iteration): + """Run the model to synthesize audios. + + Args: + iteration (int): iteration number of the loaded checkpoint. + + Returns: + None + """ self.waveflow.eval() config = self.config @@ -203,6 +255,14 @@ class WaveFlow(): @dg.no_grad def benchmark(self): + """Run the model to benchmark synthesis speed. + + Args: + None + + Returns: + None + """ self.waveflow.eval() mels_list = [mels for _, mels in self.validloader()] @@ -223,6 +283,14 @@ class WaveFlow(): print("{} X real-time".format(audio_time / syn_time)) def save(self, iteration): + """Save model checkpoint. + + Args: + iteration (int): iteration number of the model to be saved. + + Returns: + None + """ utils.save_latest_parameters(self.checkpoint_dir, iteration, self.waveflow, self.optimizer) utils.save_latest_checkpoint(self.checkpoint_dir, iteration) diff --git a/parakeet/models/waveflow/waveflow_modules.py b/parakeet/models/waveflow/waveflow_modules.py index 46dfba7..f480cd9 100644 --- a/parakeet/models/waveflow/waveflow_modules.py +++ b/parakeet/models/waveflow/waveflow_modules.py @@ -293,6 +293,14 @@ class Flow(dg.Layer): class WaveFlowModule(dg.Layer): + """WaveFlow model implementation. + + Args: + config (obj): model configuration parameters. + + Returns: + WaveFlowModule + """ def __init__(self, config): super(WaveFlowModule, self).__init__() self.n_flows = config.n_flows @@ -321,6 +329,22 @@ class WaveFlowModule(dg.Layer): self.perms.append(perm) def forward(self, audio, mel): + """Training forward pass. + + Use a conditioner to upsample mel spectrograms into hidden states. + These hidden states along with the audio are passed to a stack of Flow + modules to obtain the final latent variable z and a list of log scaling + variables, which are then passed to the WaveFlowLoss module to calculate + the negative log likelihood. + + Args: + audio (obj): audio samples. + mel (obj): mel spectrograms. + + Returns: + z (obj): latent variable. + log_s_list(list): list of log scaling variables. + """ mel = self.conditioner(mel) assert mel.shape[2] >= audio.shape[1] # Prune out the tail of audio/mel so that time/n_group == 0. @@ -361,6 +385,20 @@ class WaveFlowModule(dg.Layer): return z, log_s_list def synthesize(self, mel, sigma=1.0): + """Use model to synthesize waveform. + + Use a conditioner to upsample mel spectrograms into hidden states. + These hidden states along with initial random gaussian latent variable + are passed to a stack of Flow modules to obtain the audio output. + + Args: + mel (obj): mel spectrograms. + sigma (float, optional): standard deviation of the guassian latent + variable. Defaults to 1.0. + + Returns: + audio (obj): synthesized audio. + """ if self.dtype == "float16": mel = fluid.layers.cast(mel, self.dtype) mel = self.conditioner.infer(mel)