customized.py
This commit is contained in:
commit
53f569a519
|
@ -1,70 +1,7 @@
|
|||
from paddle import fluid
|
||||
import paddle.fluid.layers as F
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
class Conv1D(dg.Layer):
|
||||
"""
|
||||
A convolution 1D block implemented with Conv2D. Form simplicity and
|
||||
ensuring the output has the same length as the input, it does not allow
|
||||
stride > 1.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
filter_size=3,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
stride=1,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
data_format='NCT',
|
||||
dtype="float32"):
|
||||
super(Conv1D, self).__init__(dtype=dtype)
|
||||
|
||||
self.padding = padding
|
||||
self.in_channels = in_channels
|
||||
self.num_filters = out_channels
|
||||
self.filter_size = filter_size
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.padding = padding
|
||||
self.act = act
|
||||
self.data_format = data_format
|
||||
|
||||
self.conv = dg.Conv2D(
|
||||
num_channels=in_channels,
|
||||
num_filters=out_channels,
|
||||
filter_size=(1, filter_size),
|
||||
stride=(1, stride),
|
||||
dilation=(1, dilation),
|
||||
padding=(0, padding),
|
||||
groups=groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
|
||||
input channels.
|
||||
Returns:
|
||||
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
|
||||
output channels (num_filters).
|
||||
"""
|
||||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
x = fluid.layers.unsqueeze(x, [2])
|
||||
x = self.conv(x)
|
||||
x = fluid.layers.squeeze(x, [2])
|
||||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
return x
|
||||
|
||||
class Pool1D(dg.Layer):
|
||||
"""
|
||||
|
@ -115,3 +52,156 @@ class Pool1D(dg.Layer):
|
|||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
return x
|
||||
|
||||
class Conv1D(dg.Conv2D):
|
||||
"""A standard Conv1D layer that use (B, C, T) data layout. It inherit Conv2D and
|
||||
use (B, C, 1, T) data layout to compute 1D convolution. Nothing more.
|
||||
NOTE: we inherit Conv2D instead of encapsulate a Conv2D layer to make it a simple
|
||||
layer, instead of a complex one. So we can easily apply weight norm to it.
|
||||
"""
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
dtype='float32'):
|
||||
super(Conv1D, self).__init__(num_channels,
|
||||
num_filters, (1, filter_size),
|
||||
stride=(1, stride),
|
||||
padding=(0, padding),
|
||||
dilation=(1, dilation),
|
||||
groups=groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.unsqueeze(x, [2])
|
||||
x = super(Conv1D, self).forward(x) # maybe risky here
|
||||
x = F.squeeze(x, [2])
|
||||
return x
|
||||
|
||||
|
||||
class Conv1DTranspose(dg.Conv2DTranspose):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
padding=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
dtype='float32'):
|
||||
super(Conv1DTranspose, self).__init__(num_channels,
|
||||
num_filters, (1, filter_size),
|
||||
output_size=None,
|
||||
padding=(0, padding),
|
||||
stride=(1, stride),
|
||||
dilation=(1, dilation),
|
||||
groups=groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.unsqueeze(x, [2])
|
||||
x = super(Conv1DTranspose, self).forward(x) # maybe risky here
|
||||
x = F.squeeze(x, [2])
|
||||
return x
|
||||
|
||||
|
||||
class Conv1DCell(Conv1D):
|
||||
"""A causal convolve-1d cell. It uses causal padding, padding(receptive_field -1, 0).
|
||||
But Conv2D in dygraph does not support asymmetric padding yet, we just pad
|
||||
(receptive_field -1, receptive_field -1) and drop last receptive_field -1 steps in
|
||||
the output.
|
||||
|
||||
It is a cell that it acts like an RNN cell. It does not support stride > 1, and it
|
||||
ensures 1-to-1 mapping from input time steps to output timesteps.
|
||||
"""
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
dilation=1,
|
||||
causal=False,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
dtype='float32'):
|
||||
receptive_field = 1 + dilation * (filter_size - 1)
|
||||
padding = receptive_field - 1 if causal else receptive_field // 2
|
||||
self._receptive_field = receptive_field
|
||||
self.causal = causal
|
||||
super(Conv1DCell, self).__init__(num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
# it ensures that ouput time steps == input time steps
|
||||
time_steps = x.shape[-1]
|
||||
x = super(Conv1DCell, self).forward(x)
|
||||
if x.shape[-1] != time_steps:
|
||||
x = x[:, :, :time_steps]
|
||||
return x
|
||||
|
||||
@property
|
||||
def receptive_field(self):
|
||||
return self._receptive_field
|
||||
|
||||
def start_sequence(self):
|
||||
if not self.causal:
|
||||
raise ValueError(
|
||||
"Only causal conv1d shell should use start sequence")
|
||||
if self.receptive_field == 1:
|
||||
raise ValueError(
|
||||
"Convolution block with receptive field = 1 does not need"
|
||||
" to be implemented as a Conv1DCell. Conv1D suffices")
|
||||
self._buffer = None
|
||||
self._reshaped_weight = F.reshape(self.weight, (self._num_filters, -1))
|
||||
|
||||
def add_input(self, x_t):
|
||||
batch_size, c_in, _ = x_t.shape
|
||||
if self._buffer is None:
|
||||
self._buffer = F.zeros((batch_size, c_in, self.receptive_field),
|
||||
dtype=x_t.dtype)
|
||||
self._buffer = F.concat([self._buffer[:, :, 1:], x_t], -1)
|
||||
if self._dilation[1] > 1:
|
||||
input = F.strided_slice(self._buffer,
|
||||
axes=[2],
|
||||
starts=[0],
|
||||
ends=[self.receptive_field],
|
||||
strides=[self._dilation[1]])
|
||||
else:
|
||||
input = self._buffer
|
||||
input = F.reshape(input, (batch_size, -1))
|
||||
y_t = F.matmul(input, self._reshaped_weight, transpose_y=True)
|
||||
y_t = y_t + self.bias
|
||||
y_t = F.unsqueeze(y_t, [-1])
|
||||
return y_t
|
||||
|
|
Loading…
Reference in New Issue