clean code

This commit is contained in:
Kexin Zhao 2019-12-02 22:58:17 -08:00
parent b15c313423
commit 98841ee48a
9 changed files with 314 additions and 1322 deletions

View File

@ -163,6 +163,35 @@ class WeightedRandomSampler(Sampler):
return self.num_samples return self.num_samples
class DistributedSampler(Sampler):
def __init__(self, dataset_size, num_trainers, rank, shuffle=True):
self.dataset_size = dataset_size
self.num_trainers = num_trainers
self.rank = rank
self.num_samples = int(np.ceil(dataset_size / num_trainers))
self.total_size = self.num_samples * num_trainers
assert self.total_size >= self.dataset_size
self.shuffle = shuffle
def __iter__(self):
indices = list(range(self.dataset_size))
if self.shuffle:
random.shuffle(indices)
# Append extra samples to make it evenly distributed on all trainers.
indices += indices[:(self.total_size - self.dataset_size)]
assert len(indices) == self.total_size
# Subset samples for each trainer.
indices = indices[self.rank:self.total_size:self.num_trainers]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
class BatchSampler(Sampler): class BatchSampler(Sampler):
r"""Wraps another sampler to yield a mini-batch of indices. r"""Wraps another sampler to yield a mini-batch of indices.
Args: Args:
@ -206,4 +235,4 @@ class BatchSampler(Sampler):
if self.drop_last: if self.drop_last:
return len(self.sampler) // self.batch_size return len(self.sampler) // self.batch_size
else: else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size return (len(self.sampler) + self.batch_size - 1) // self.batch_size

View File

@ -0,0 +1,32 @@
valid_size: 16
train_clip_second: 0.5
sample_rate: 22050
fft_window_shift: 256
fft_window_size: 1024
fft_size: 2048
mel_bands: 80
seed: 1
batch_size: 8
test_every: 2000
save_every: 10000
max_iterations: 2000000
layers: 30
kernel_width: 2
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
residual_channels: 128
skip_channels: 128
loss_type: mix-gaussian-pdf
num_mixtures: 10
log_scale_min: -9.0
conditioner:
filter_sizes: [[32, 3], [32, 3]]
upsample_factors: [16, 16]
learning_rate: 0.001
gradient_max_norm: 100.0
anneal:
every: 200000
rate: 0.5

View File

@ -0,0 +1,31 @@
valid_size: 16
train_clip_second: 0.5
sample_rate: 22050
fft_window_shift: 256
fft_window_size: 1024
fft_size: 2048
mel_bands: 80
seed: 1
batch_size: 8
test_every: 2000
save_every: 10000
max_iterations: 2000000
layers: 30
kernel_width: 2
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
residual_channels: 128
skip_channels: 128
loss_type: softmax
num_channels: 2048
conditioner:
filter_sizes: [[32, 3], [32, 3]]
upsample_factors: [16, 16]
learning_rate: 0.001
gradient_max_norm: 100.0
anneal:
every: 200000
rate: 0.5

View File

@ -1,5 +1,3 @@
import math
import os
import random import random
import librosa import librosa
@ -9,7 +7,7 @@ from paddle import fluid
import utils import utils
from parakeet.datasets import ljspeech from parakeet.datasets import ljspeech
from parakeet.data import dataset from parakeet.data import dataset
from parakeet.data.sampler import Sampler, BatchSampler, SequentialSampler from parakeet.data.sampler import DistributedSampler, BatchSampler
from parakeet.data.datacargo import DataCargo from parakeet.data.datacargo import DataCargo
@ -20,7 +18,7 @@ class Dataset(ljspeech.LJSpeech):
self.fft_window_shift = config.fft_window_shift self.fft_window_shift = config.fft_window_shift
# Calculate context frames. # Calculate context frames.
frames_per_second = config.sample_rate // self.fft_window_shift frames_per_second = config.sample_rate // self.fft_window_shift
train_clip_frames = int(math.ceil( train_clip_frames = int(np.ceil(
config.train_clip_second * frames_per_second)) config.train_clip_second * frames_per_second))
context_frames = config.context_size // self.fft_window_shift context_frames = config.context_size // self.fft_window_shift
self.num_frames = train_clip_frames + context_frames self.num_frames = train_clip_frames + context_frames
@ -39,7 +37,7 @@ class Dataset(ljspeech.LJSpeech):
assert loaded_sr == sr assert loaded_sr == sr
# Pad audio to the right size. # Pad audio to the right size.
frames = math.ceil(float(audio.size) / fft_window_shift) frames = int(np.ceil(float(audio.size) / fft_window_shift))
fft_padding = (fft_size - fft_window_shift) // 2 fft_padding = (fft_size - fft_window_shift) // 2
desired_length = frames * fft_window_shift + fft_padding * 2 desired_length = frames * fft_window_shift + fft_padding * 2
pad_amount = (desired_length - audio.size) // 2 pad_amount = (desired_length - audio.size) // 2
@ -125,35 +123,6 @@ class Subset(dataset.Dataset):
return len(self.indices) return len(self.indices)
class DistributedSampler(Sampler):
def __init__(self, dataset_size, num_trainers, rank, shuffle=True):
self.dataset_size = dataset_size
self.num_trainers = num_trainers
self.rank = rank
self.num_samples = int(math.ceil(dataset_size / num_trainers))
self.total_size = self.num_samples * num_trainers
assert self.total_size >= self.dataset_size
self.shuffle = shuffle
def __iter__(self):
indices = list(range(self.dataset_size))
if self.shuffle:
random.shuffle(indices)
# Append extra samples to make it evenly distributed on all trainers.
indices += indices[:(self.total_size - self.dataset_size)]
assert len(indices) == self.total_size
# Subset samples for each trainer.
indices = indices[self.rank:self.total_size:self.num_trainers]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
class LJSpeech: class LJSpeech:
def __init__(self, config, nranks, rank): def __init__(self, config, nranks, rank):
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace() place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()

View File

@ -1,249 +0,0 @@
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg
import numpy as np
import weight_norm
def Embedding(name_scope,
num_embeddings,
embed_dim,
padding_idx=None,
std=0.1,
dtype="float32"):
# param attrs
weight_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(
scale=std))
layer = dg.Embedding(
name_scope, (num_embeddings, embed_dim),
padding_idx=padding_idx,
param_attr=weight_attr,
dtype=dtype)
return layer
def FC(name_scope,
in_features,
size,
num_flatten_dims=1,
relu=False,
dropout=0.0,
act=None,
dtype="float32"):
"""
A special Linear Layer, when it is used with dropout, the weight is
initialized as normal(0, std=np.sqrt((1-dropout) / in_features))
"""
# stds
if isinstance(in_features, int):
in_features = [in_features]
stds = [np.sqrt((1.0 - dropout) / in_feature) for in_feature in in_features]
if relu:
stds = [std * np.sqrt(2.0) for std in stds]
weight_inits = [
fluid.initializer.NormalInitializer(scale=std) for std in stds
]
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attrs = [fluid.ParamAttr(initializer=init) for init in weight_inits]
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = weight_norm.FC(name_scope,
size,
num_flatten_dims=num_flatten_dims,
param_attr=weight_attrs,
bias_attr=bias_attr,
act=act,
dtype=dtype)
return layer
def Conv1D(name_scope,
in_channels,
num_filters,
filter_size=2,
dilation=1,
groups=None,
causal=False,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
"""
A special Conv1D Layer, when it is used with dropout, the weight is
initialized as
normal(0, std=np.sqrt(std_mul * (1-dropout) / (filter_size * in_channels)))
"""
# std
std = np.sqrt((std_mul * (1.0 - dropout)) / (filter_size * in_channels))
weight_init = fluid.initializer.NormalInitializer(loc=0.0, scale=std)
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = weight_norm.Conv1D(
name_scope,
num_filters,
filter_size,
dilation,
groups=groups,
causal=causal,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
class Conv1D_GU(dg.Layer):
def __init__(self,
name_scope,
conditioner_dim,
in_channels,
num_filters,
filter_size,
dilation,
causal=False,
residual=True,
dtype="float32"):
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
self.conditioner_dim = conditioner_dim
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channels should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
dtype=dtype)
self.fc = Conv1D(
self.full_name(),
conditioner_dim,
2 * num_filters,
filter_size=1,
dilation=1,
causal=False,
dtype=dtype)
def forward(self, x, skip=None, conditioner=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1DGLU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
conditioner, where C_con is conditioner hidden dim which
equals the num of mel bands. Note that when using residual
connection, the Conv1DGLU does not change the number of
channels, so out channels equals input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1DGLU, where
C_out means the output channels of Conv1DGLU.
"""
residual = x
x = self.conv(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def add_input(self, x, skip=None, conditioner=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
conditioner: shape(B, conditioner_dim, 1, time_steps)
Outputs:
out: shape(B, num_filters, 1, time_steps), where time_steps = 1
"""
residual = x
# add step input and produce step output
x = self.conv.add_input(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def Conv2DTranspose(name_scope,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
use_cudnn=True,
act=None,
dtype="float32"):
val = 1.0 / (filter_size[0] * filter_size[1])
weight_init = fluid.initializer.ConstantInitializer(val)
weight_attr = fluid.ParamAttr(initializer=weight_init)
layer = weight_norm.Conv2DTranspose(
name_scope,
num_filters,
filter_size=filter_size,
padding=padding,
stride=stride,
dilation=dilation,
param_attr=weight_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer

View File

@ -4,12 +4,12 @@ import time
import librosa import librosa
import numpy as np import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
from paddle import fluid
import utils import utils
from data import LJSpeech from data import LJSpeech
from wavenet_modules import WaveNetModule, debug from wavenet_modules import WaveNetModule
class WaveNet(): class WaveNet():
@ -33,18 +33,6 @@ class WaveNet():
self.trainloader = dataset.trainloader self.trainloader = dataset.trainloader
self.validloader = dataset.validloader self.validloader = dataset.validloader
# if self.rank == 0:
# for i, (audios, mels, ids) in enumerate(self.validloader()):
# print("audios {}, mels {}, ids {}".format(audios.dtype, mels.dtype, ids.dtype))
# print("{}: rank {}, audios {}, mels {}, indices {} / {}".format(
# i, self.rank, audios.shape, mels.shape, ids.shape,
# ids.numpy()))
#
# for i, (audios, mels, ids) in enumerate(self.trainloader):
# print("{}: rank {}, audios {}, mels {}, indices {} / {}".format(
# i, self.rank, audios.shape, mels.shape, ids.shape,
# ids.numpy()))
wavenet = WaveNetModule("wavenet", config, self.rank) wavenet = WaveNetModule("wavenet", config, self.rank)
# Dry run once to create and initalize all necessary parameters. # Dry run once to create and initalize all necessary parameters.
@ -139,8 +127,8 @@ class WaveNet():
self.wavenet.eval() self.wavenet.eval()
total_loss = [] total_loss = []
start_time = time.time()
sample_audios = [] sample_audios = []
start_time = time.time()
for audios, mels, audio_starts in self.validloader(): for audios, mels, audio_starts in self.validloader():
loss, sample_audio = self.wavenet(audios, mels, audio_starts, True) loss, sample_audio = self.wavenet(audios, mels, audio_starts, True)
total_loss.append(float(loss.numpy())) total_loss.append(float(loss.numpy()))
@ -160,11 +148,6 @@ class WaveNet():
tb.add_audio("Teacher-Forced-Audio-1", sample_audios[1].numpy(), tb.add_audio("Teacher-Forced-Audio-1", sample_audios[1].numpy(),
iteration, sample_rate=self.config.sample_rate) iteration, sample_rate=self.config.sample_rate)
def save(self, iteration):
utils.save_latest_parameters(self.checkpoint_dir, iteration,
self.wavenet, self.optimizer)
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)
@dg.no_grad @dg.no_grad
def infer(self, iteration): def infer(self, iteration):
self.wavenet.eval() self.wavenet.eval()
@ -186,3 +169,8 @@ class WaveNet():
syn_audio.shape, syn_time)) syn_audio.shape, syn_time))
librosa.output.write_wav(filename, syn_audio, librosa.output.write_wav(filename, syn_audio,
sr=config.sample_rate) sr=config.sample_rate)
def save(self, iteration):
utils.save_latest_parameters(self.checkpoint_dir, iteration,
self.wavenet, self.optimizer)
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)

View File

@ -1,11 +1,9 @@
import itertools import itertools
import math
import numpy as np import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
import ops from paddle import fluid
import weight_norm from parakeet.modules import conv, modules
def get_padding(filter_size, stride, padding_type='same'): def get_padding(filter_size, stride, padding_type='same'):
@ -16,22 +14,6 @@ def get_padding(filter_size, stride, padding_type='same'):
return padding return padding
def debug(x, var_name, rank, verbose=False):
if not verbose and rank != 0:
return
dim = len(x.shape)
if not isinstance(x, np.ndarray):
x = x.numpy()
if dim == 1:
print("Rank {}".format(rank), var_name, "shape {}, value {}".format(x.shape, x))
elif dim == 2:
print("Rank {}".format(rank), var_name, "shape {}, value {}".format(x.shape, x[:, :5]))
elif dim == 3:
print("Rank {}".format(rank), var_name, "shape {}, value {}".format(x.shape, x[:, :5, 0]))
else:
print("Rank", rank, var_name, "shape", x.shape)
def extract_slices(x, audio_starts, audio_length, rank): def extract_slices(x, audio_starts, audio_length, rank):
slices = [] slices = []
for i in range(x.shape[0]): for i in range(x.shape[0]):
@ -58,7 +40,7 @@ class Conditioner(dg.Layer):
stride = (up_scale, 1) stride = (up_scale, 1)
padding = get_padding(filter_sizes[i], stride) padding = get_padding(filter_sizes[i], stride)
self.deconvs.append( self.deconvs.append(
ops.Conv2DTranspose( modules.Conv2DTranspose(
self.full_name(), self.full_name(),
num_filters=1, num_filters=1,
filter_size=filter_sizes[i], filter_size=filter_sizes[i],
@ -94,12 +76,13 @@ class WaveNetModule(dg.Layer):
print("context_size", self.context_size) print("context_size", self.context_size)
if config.loss_type == "softmax": if config.loss_type == "softmax":
self.embedding_fc = ops.Embedding( self.embedding_fc = modules.Embedding(
self.full_name(), self.full_name(),
num_embeddings=config.num_channels, num_embeddings=config.num_channels,
embed_dim=config.residual_channels) embed_dim=config.residual_channels,
std=0.1)
elif config.loss_type == "mix-gaussian-pdf": elif config.loss_type == "mix-gaussian-pdf":
self.embedding_fc = ops.FC( self.embedding_fc = modules.FC(
self.full_name(), self.full_name(),
in_features=1, in_features=1,
size=config.residual_channels, size=config.residual_channels,
@ -112,7 +95,7 @@ class WaveNetModule(dg.Layer):
self.dilated_causal_convs = [] self.dilated_causal_convs = []
for dilation in self.dilations: for dilation in self.dilations:
self.dilated_causal_convs.append( self.dilated_causal_convs.append(
ops.Conv1D_GU( modules.Conv1D_GU(
self.full_name(), self.full_name(),
conditioner_dim=config.mel_bands, conditioner_dim=config.mel_bands,
in_channels=config.residual_channels, in_channels=config.residual_channels,
@ -126,7 +109,7 @@ class WaveNetModule(dg.Layer):
for i, layer in enumerate(self.dilated_causal_convs): for i, layer in enumerate(self.dilated_causal_convs):
self.add_sublayer("dilated_causal_conv_{}".format(i), layer) self.add_sublayer("dilated_causal_conv_{}".format(i), layer)
self.fc1 = ops.FC( self.fc1 = modules.FC(
self.full_name(), self.full_name(),
in_features=config.residual_channels, in_features=config.residual_channels,
size=config.skip_channels, size=config.skip_channels,
@ -134,7 +117,7 @@ class WaveNetModule(dg.Layer):
relu=True, relu=True,
act="relu") act="relu")
self.fc2 = ops.FC( self.fc2 = modules.FC(
self.full_name(), self.full_name(),
in_features=config.skip_channels, in_features=config.skip_channels,
size=config.skip_channels, size=config.skip_channels,
@ -143,14 +126,14 @@ class WaveNetModule(dg.Layer):
act="relu") act="relu")
if config.loss_type == "softmax": if config.loss_type == "softmax":
self.fc3 = ops.FC( self.fc3 = modules.FC(
self.full_name(), self.full_name(),
in_features=config.skip_channels, in_features=config.skip_channels,
size=config.num_channels, size=config.num_channels,
num_flatten_dims=2, num_flatten_dims=2,
relu=False) relu=False)
elif config.loss_type == "mix-gaussian-pdf": elif config.loss_type == "mix-gaussian-pdf":
self.fc3 = ops.FC( self.fc3 = modules.FC(
self.full_name(), self.full_name(),
in_features=config.skip_channels, in_features=config.skip_channels,
size=3 * config.num_mixtures, size=3 * config.num_mixtures,
@ -175,8 +158,8 @@ class WaveNetModule(dg.Layer):
return samples return samples
def sample_mix_gaussian(self, mix_parameters): def sample_mix_gaussian(self, mix_parameters):
# mix_parameters reshape from [bs, 13799, 3 * num_mixtures] # mix_parameters reshape from [bs, len, 3 * num_mixtures]
# to [bs * 13799, 3 * num_mixtures]. # to [bs * len, 3 * num_mixtures].
batch, length, hidden = mix_parameters.shape batch, length, hidden = mix_parameters.shape
mix_param_2d = fluid.layers.reshape(mix_parameters, mix_param_2d = fluid.layers.reshape(mix_parameters,
[batch * length, hidden]) [batch * length, hidden])
@ -197,7 +180,7 @@ class WaveNetModule(dg.Layer):
mu_comp = fluid.layers.gather_nd(mu, comp_samples) mu_comp = fluid.layers.gather_nd(mu, comp_samples)
s_comp = fluid.layers.gather_nd(s, comp_samples) s_comp = fluid.layers.gather_nd(s, comp_samples)
# N(0, 1) Normal Sample. # N(0, 1) normal sample.
u = fluid.layers.gaussian_random(shape=[batch * length]) u = fluid.layers.gaussian_random(shape=[batch * length])
samples = mu_comp + u * s_comp samples = mu_comp + u * s_comp
samples = fluid.layers.clip(samples, min=-1.0, max=1.0) samples = fluid.layers.clip(samples, min=-1.0, max=1.0)
@ -205,8 +188,6 @@ class WaveNetModule(dg.Layer):
return samples return samples
def softmax_loss(self, targets, mix_parameters): def softmax_loss(self, targets, mix_parameters):
# targets: [bs, 13799] -> [bs, 11752]
# mix_params: [bs, 13799, 3] -> [bs, 11752, 3]
targets = targets[:, self.context_size:] targets = targets[:, self.context_size:]
mix_parameters = mix_parameters[:, self.context_size:, :] mix_parameters = mix_parameters[:, self.context_size:, :]
@ -216,22 +197,22 @@ class WaveNetModule(dg.Layer):
quantized = fluid.layers.cast( quantized = fluid.layers.cast(
(targets + 1.0) / 2.0 * num_channels, dtype="int64") (targets + 1.0) / 2.0 * num_channels, dtype="int64")
# per_sample_loss shape: [bs, 17952, 1] # per_sample_loss shape: [bs, len, 1]
per_sample_loss = fluid.layers.softmax_with_cross_entropy( per_sample_loss = fluid.layers.softmax_with_cross_entropy(
logits=mix_parameters, label=fluid.layers.unsqueeze(quantized, 2)) logits=mix_parameters, label=fluid.layers.unsqueeze(quantized, 2))
loss = fluid.layers.reduce_mean(per_sample_loss) loss = fluid.layers.reduce_mean(per_sample_loss)
#debug(loss, "softmax loss", self.rank)
return loss return loss
def mixture_density_loss(self, targets, mix_parameters, log_scale_min): def mixture_density_loss(self, targets, mix_parameters, log_scale_min):
# targets: [bs, 13799] -> [bs, 11752] # targets: [bs, len]
# mix_params: [bs, 13799, 3] -> [bs, 11752, 3] # mix_params: [bs, len, 3 * num_mixture]
targets = targets[:, self.context_size:] targets = targets[:, self.context_size:]
mix_parameters = mix_parameters[:, self.context_size:, :] mix_parameters = mix_parameters[:, self.context_size:, :]
# log_s: [bs, 11752, num_mixture] # log_s: [bs, len, num_mixture]
logits_pi, mu, log_s = fluid.layers.split(mix_parameters, num_or_sections=3, dim=-1) logits_pi, mu, log_s = fluid.layers.split(
mix_parameters, num_or_sections=3, dim=-1)
pi = fluid.layers.softmax(logits_pi, axis=-1) pi = fluid.layers.softmax(logits_pi, axis=-1)
log_s = fluid.layers.clip(log_s, min=log_scale_min, max=100.0) log_s = fluid.layers.clip(log_s, min=log_scale_min, max=100.0)
@ -242,10 +223,9 @@ class WaveNetModule(dg.Layer):
targets = fluid.layers.expand(targets, [1, 1, self.config.num_mixtures]) targets = fluid.layers.expand(targets, [1, 1, self.config.num_mixtures])
x_std = inv_s * (targets - mu) x_std = inv_s * (targets - mu)
exponent = fluid.layers.exp(-0.5 * x_std * x_std) exponent = fluid.layers.exp(-0.5 * x_std * x_std)
# pdf_x: [bs, 11752, 1]
pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_s * exponent pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_s * exponent
pdf_x = pi * pdf_x pdf_x = pi * pdf_x
# pdf_x: [bs, 11752] # pdf_x: [bs, len]
pdf_x = fluid.layers.reduce_sum(pdf_x, dim=-1) pdf_x = fluid.layers.reduce_sum(pdf_x, dim=-1)
per_sample_loss = 0.0 - fluid.layers.log(pdf_x + 1e-9) per_sample_loss = 0.0 - fluid.layers.log(pdf_x + 1e-9)
@ -254,8 +234,6 @@ class WaveNetModule(dg.Layer):
return loss return loss
def forward(self, audios, mels, audio_starts, sample=False): def forward(self, audios, mels, audio_starts, sample=False):
# audios: [bs, 13800], mels: [bs, full_frame_length, 80]
# audio_starts: [bs]
# Build conditioner based on mels. # Build conditioner based on mels.
full_conditioner = self.conditioner(mels) full_conditioner = self.conditioner(mels)
@ -264,15 +242,14 @@ class WaveNetModule(dg.Layer):
conditioner = extract_slices(full_conditioner, conditioner = extract_slices(full_conditioner,
audio_starts, audio_length, self.rank) audio_starts, audio_length, self.rank)
# input_audio, target_audio: [bs, 13799] # input_audio, target_audio: [bs, len]
input_audios = audios[:, :-1] input_audios = audios[:, :-1]
target_audios = audios[:, 1:] target_audios = audios[:, 1:]
# conditioner: [bs, 13799, 80] # conditioner: [bs, len, mel_bands]
conditioner = conditioner[:, 1:, :] conditioner = conditioner[:, 1:, :]
loss_type = self.config.loss_type loss_type = self.config.loss_type
# layer_input: [bs, 13799, 128]
if loss_type == "softmax": if loss_type == "softmax":
input_audios = fluid.layers.clip( input_audios = fluid.layers.clip(
input_audios, min=-1.0, max=0.99999) input_audios, min=-1.0, max=0.99999)
@ -280,31 +257,31 @@ class WaveNetModule(dg.Layer):
quantized = fluid.layers.cast( quantized = fluid.layers.cast(
(input_audios + 1.0) / 2.0 * self.config.num_channels, (input_audios + 1.0) / 2.0 * self.config.num_channels,
dtype="int64") dtype="int64")
layer_input = self.embedding_fc(fluid.layers.unsqueeze(quantized, 2)) layer_input = self.embedding_fc(
fluid.layers.unsqueeze(quantized, 2))
elif loss_type == "mix-gaussian-pdf": elif loss_type == "mix-gaussian-pdf":
layer_input = self.embedding_fc(fluid.layers.unsqueeze(input_audios, 2)) layer_input = self.embedding_fc(
fluid.layers.unsqueeze(input_audios, 2))
else: else:
raise ValueError( raise ValueError(
"loss_type {} is unsupported!".format(loss_type)) "loss_type {} is unsupported!".format(loss_type))
# layer_input: [bs, res_channel, 1, 13799] # layer_input: [bs, res_channel, 1, len]
layer_input = fluid.layers.unsqueeze(fluid.layers.transpose(layer_input, perm=[0, 2, 1]), 2) layer_input = fluid.layers.unsqueeze(
# conditioner: [bs, mel_bands, 1, 13799] fluid.layers.transpose(layer_input, perm=[0, 2, 1]), 2)
conditioner = fluid.layers.unsqueeze(fluid.layers.transpose(conditioner, perm=[0, 2, 1]), 2) # conditioner: [bs, mel_bands, 1, len]
conditioner = fluid.layers.unsqueeze(
fluid.layers.transpose(conditioner, perm=[0, 2, 1]), 2)
# layer_input: [bs, res_channel, 1, 13799]
# skip: [bs, res_channel, 1, 13799]
skip = None skip = None
for i, layer in enumerate(self.dilated_causal_convs): for i, layer in enumerate(self.dilated_causal_convs):
# layer_input: [bs, res_channel, 1, len]
# skip: [bs, res_channel, 1, len]
layer_input, skip = layer(layer_input, skip, conditioner) layer_input, skip = layer(layer_input, skip, conditioner)
#debug(layer_input, "layer_input_" + str(i), self.rank)
#debug(skip, "skip_" + str(i), self.rank)
# Reshape skip to [bs, 13799, res_channel] # Reshape skip to [bs, len, res_channel]
skip = fluid.layers.transpose(fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1]) skip = fluid.layers.transpose(
#debug(skip, "skip", self.rank) fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
# mix_param: [bs, 13799, 3 * num_mixtures]
mix_parameters = self.fc3(self.fc2(self.fc1(skip))) mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
# Sample teacher-forced audio. # Sample teacher-forced audio.
@ -317,12 +294,7 @@ class WaveNetModule(dg.Layer):
else: else:
raise ValueError( raise ValueError(
"loss_type {} is unsupported!".format(loss_type)) "loss_type {} is unsupported!".format(loss_type))
#debug(sample_audios, "sample_audios", self.rank)
# Calculate mix-gaussian density loss.
# padding is all zero.
# target_audio: [bs, 13799].
# mix_params: [bs, 13799, 3].
if loss_type == "softmax": if loss_type == "softmax":
loss = self.softmax_loss(target_audios, mix_parameters) loss = self.softmax_loss(target_audios, mix_parameters)
elif loss_type == "mix-gaussian-pdf": elif loss_type == "mix-gaussian-pdf":
@ -332,27 +304,16 @@ class WaveNetModule(dg.Layer):
raise ValueError( raise ValueError(
"loss_type {} is unsupported!".format(loss_type)) "loss_type {} is unsupported!".format(loss_type))
#print("Rank {}, loss {}".format(self.rank, loss.numpy()))
return loss, sample_audios return loss, sample_audios
def synthesize(self, mels): def synthesize(self, mels):
self.start_new_sequence() self.start_new_sequence()
print("input mels shape", mels.shape)
# mels: [bs=1, n_frames, 80]
# conditioner: [1, n_frames * samples_per_frame, 80]
# Should I move forward by one sample? No difference
# Append context frame to mels
bs, n_frames, mel_bands = mels.shape bs, n_frames, mel_bands = mels.shape
#num_pad_frames = int(np.ceil(self.context_size / self.config.fft_window_shift))
#silence = fluid.layers.zeros(shape=[bs, num_pad_frames, mel_bands], dtype="float32")
#inf_mels = fluid.layers.concat([silence, mels], axis=1)
#print("padded mels shape", inf_mels.shape)
#conditioner = self.conditioner(inf_mels)[:, self.context_size:, :]
conditioner = self.conditioner(mels) conditioner = self.conditioner(mels)
time_steps = conditioner.shape[1] time_steps = conditioner.shape[1]
print("Total steps", time_steps)
print("input mels shape", mels.shape)
print("Total synthesis steps", time_steps)
loss_type = self.config.loss_type loss_type = self.config.loss_type
audio_samples = [] audio_samples = []
@ -361,8 +322,8 @@ class WaveNetModule(dg.Layer):
if i % 100 == 0: if i % 100 == 0:
print("Step", i) print("Step", i)
# convert from real value sample to audio embedding. # Convert from real value sample to audio embedding.
# [bs, 1, 128] # audio_input: [bs, 1, channel]
if loss_type == "softmax": if loss_type == "softmax":
current_sample = fluid.layers.clip( current_sample = fluid.layers.clip(
current_sample, min=-1.0, max=0.99999) current_sample, min=-1.0, max=0.99999)
@ -377,21 +338,23 @@ class WaveNetModule(dg.Layer):
raise ValueError( raise ValueError(
"loss_type {} is unsupported!".format(loss_type)) "loss_type {} is unsupported!".format(loss_type))
# [bs, 128, 1, 1] # [bs, channel, 1, 1]
audio_input = fluid.layers.unsqueeze(fluid.layers.transpose(audio_input, perm=[0, 2, 1]), 2) audio_input = fluid.layers.unsqueeze(
# [bs, 80] fluid.layers.transpose(audio_input, perm=[0, 2, 1]), 2)
# [bs, mel_bands]
cond_input = conditioner[:, i, :] cond_input = conditioner[:, i, :]
# [bs, 80, 1, 1] # [bs, mel_bands, 1, 1]
cond_input = fluid.layers.reshape( cond_input = fluid.layers.reshape(
cond_input, cond_input.shape + [1, 1]) cond_input, cond_input.shape + [1, 1])
skip = None skip = None
for layer in self.dilated_causal_convs: for layer in self.dilated_causal_convs:
audio_input, skip = layer.add_input(audio_input, skip, cond_input) audio_input, skip = layer.add_input(
audio_input, skip, cond_input)
# [bs, 1, 128] # [bs, 1, channel]
skip = fluid.layers.transpose(fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1]) skip = fluid.layers.transpose(
# [bs, 1, 3] fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
mix_parameters = self.fc3(self.fc2(self.fc1(skip))) mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
if loss_type == "softmax": if loss_type == "softmax":
sample = self.sample_softmax(mix_parameters) sample = self.sample_softmax(mix_parameters)
@ -407,17 +370,12 @@ class WaveNetModule(dg.Layer):
current_sample = fluid.layers.reshape(current_sample, current_sample = fluid.layers.reshape(current_sample,
current_sample.shape + [1, 1]) current_sample.shape + [1, 1])
# syn_audio: (num_samples,) # syn_audio: [num_samples]
syn_audio = fluid.layers.concat(audio_samples, axis=0).numpy() syn_audio = fluid.layers.concat(audio_samples, axis=0).numpy()
return syn_audio return syn_audio
def start_new_sequence(self): def start_new_sequence(self):
for layer in self.sublayers(): for layer in self.sublayers():
if isinstance(layer, weight_norm.Conv1D): if isinstance(layer, conv.Conv1D):
layer.start_new_sequence() layer.start_new_sequence()
def save(self, iteration):
utils.save_latest_parameters(self.checkpoint_dir, iteration,
self.wavenet, self.optimizer)
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)

View File

@ -1,920 +0,0 @@
import math
from copy import deepcopy
import numpy as np
import paddle.fluid.dygraph as dg
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.fluid.layers import utils
from six.moves import reduce
def _norm(p, dim):
"""Computes the norm over all dimensions except dim.
It differs from pytorch implementation that it does not keep dim.
This difference is related with the broadcast mechanism in paddle.
Read elementeise_mul for more.
"""
if dim is None:
return np.linalg.norm(p, ord=2, axis=None)
elif dim == 0:
p = np.reshape(p, newshape=(p.shape[0], -1))
return np.linalg.norm(p, ord=2, axis=1)
elif dim == p.ndim - 1:
p = np.reshape(p, newshape=(-1, p.shape[-1]))
return np.linalg.norm(p, ord=2, axis=0)
else:
perm = list(range(p.ndim))
perm[0] = dim
perm[dim] = 0
return _norm(np.transpose(p, axes=perm))
class Conv1D(dg.Layer):
"""
A convolution 1D block implemented with Conv2D. Form simplicity and
ensuring the output has the same length as the input, it does not allow
stride > 1.
"""
def __init__(self,
name_scope,
num_filters,
filter_size=3,
dilation=1,
groups=None,
causal=False,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype="float32"):
super(Conv1D, self).__init__(name_scope, dtype=dtype)
if causal:
padding = dilation * (filter_size - 1)
else:
padding = (dilation * (filter_size - 1)) // 2
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.padding = padding
self.act = act
self.conv = Conv2D(
self.full_name(),
num_filters=num_filters,
filter_size=(1, filter_size),
stride=(1, 1),
dilation=(1, dilation),
padding=(0, padding),
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
def forward(self, x):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
output channels (num_filters).
"""
x = self.conv(x)
if self.filter_size > 1:
if self.causal:
x = fluid.layers.slice(
x, axes=[3], starts=[0], ends=[-self.padding])
elif self.filter_size % 2 == 0:
x = fluid.layers.slice(x, axes=[3], starts=[0], ends=[-1])
return x
def start_new_sequence(self):
self.temp_weight = None
self.input_buffer = None
def add_input(self, x):
"""
Adding input for a time step and compute an output for a time step.
Args:
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
input channels, and T = 1.
Returns:
out (Variable): Shape(B, C_out, 1, T), the outputs, where C_out
means output channels (num_filters), and T = 1.
"""
if self.temp_weight is None:
self.temp_weight = self._reshaped_weight()
window_size = 1 + (self.filter_size - 1) * self.dilation
batch_size = x.shape[0]
in_channels = x.shape[1]
if self.filter_size > 1:
if self.input_buffer is None:
self.input_buffer = fluid.layers.fill_constant(
[batch_size, in_channels, 1, window_size - 1],
dtype=x.dtype,
value=0.0)
else:
self.input_buffer = self.input_buffer[:, :, :, 1:]
self.input_buffer = fluid.layers.concat(
[self.input_buffer, x], axis=3)
x = self.input_buffer
if self.dilation > 1:
if not hasattr(self, "indices"):
self.indices = dg.to_variable(
np.arange(0, window_size, self.dilation))
tmp = fluid.layers.transpose(
self.input_buffer, perm=[3, 1, 2, 0])
tmp = fluid.layers.gather(tmp, index=self.indices)
tmp = fluid.layers.transpose(tmp, perm=[3, 1, 2, 0])
x = tmp
inputs = fluid.layers.reshape(
x, shape=[batch_size, in_channels * 1 * self.filter_size])
out = fluid.layers.matmul(inputs, self.temp_weight, transpose_y=True)
out = fluid.layers.elementwise_add(out, self.conv._bias_param, axis=-1)
out = fluid.layers.reshape(out, out.shape + [1, 1])
out = self._helper.append_activation(out, act=self.act)
return out
def _reshaped_weight(self):
"""
Get the linearized weight of convolution filter, cause it is by nature
a matmul weight. And because the model uses weight norm, compute the
weight by weight_v * weight_g to make it faster.
Returns:
weight_matrix (Variable): Shape(C_out, C_in * 1 * kernel_size)
"""
shape = self.conv._filter_param_v.shape
matrix_shape = [shape[0], np.prod(shape[1:])]
weight_matrix = fluid.layers.reshape(
self.conv._filter_param_v, shape=matrix_shape)
weight_matrix = fluid.layers.elementwise_mul(
fluid.layers.l2_normalize(
weight_matrix, axis=1),
self.conv._filter_param_g,
axis=0)
return weight_matrix
class FC(dg.Layer):
"""
**Fully Connected Layer**
This function creates a fully connected layer in the network. It can take
one or multiple tensors as its inputs(input can be a list of Variable, see
Args in detail). It creates a pair of variables called (magnitude(g),
direction(V)) for each input tensor. Elementwise_mul(V, g) represents a fully connected
weight matrix from each input unit to each output unit.
The fully connected layer multiplies each input tensor
with its corresponding weight to produce an output Tensor with shape [M, `size`],
where M is batch size. If multiple input tensors are given, the results of
multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
is not None, a bias variable will be created and added to the output.
Finally, if activation is not None, it will be applied to the output as well.
When the input is single tensor:
.. math::
Out = Act({X(normalize(V)g) + b})
When the input are multiple tensors:
.. math::
Out = Act({\sum_{i=0}^{N-1}X_i(V_ig_i) + b})
In the above equation:
* :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
* :math:`X_i`: The i-th input tensor.
* :math:`V_i`: The i-th direction matrix corresponding i-th input tensor.
* :math:`g_i`: The i-th magnitude vector corresponding i-th input tensor.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
See below for an example.
.. code-block:: text
Given:
data_1.data = [[[0.1, 0.2],
[0.3, 0.4]]]
data_1.shape = (1, 2, 2) # 1 is batch_size
data_2 = [[[0.1, 0.2, 0.3]]]
data_2.shape = (1, 1, 3)
out = fluid.layers.fc(input=[data_1, data_2], size=2)
Then:
out.data = [[0.18669507, 0.1893476]]
out.shape = (1, 2)
Args:
name_scope(str): The name of this class.
size(int): The number of output units in this layer.
num_flatten_dims (int): The fc layer can accept an input tensor with more than
two dimensions. If this happens, the multidimensional tensor will first be flattened
into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, suppose
`X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
param_attr (ParamAttr|list of ParamAttr|None): The parameter attribute for learnable
parameters/weights of this layer.
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act (str|None): Activation to be applied to the output of this layer.
is_test(bool): A flag indicating whether execution is in test phase. Default: False
dtype(str): Dtype used for weight
Raises:
ValueError: If rank of the input tensor is less than 2.
Examples:
.. code-block:: python
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddle.fluid.dygraph import FC
import numpy as np
data = np.random.uniform( -1, 1, [30, 10, 32] ).astype('float32')
with fluid.dygraph.guard():
fc = FC( "fc", 64, num_flatten_dims=2)
data = to_variable( data )
conv = fc( data )
"""
def __init__(self,
name_scope,
size,
num_flatten_dims=1,
epsilon=1e-30,
param_attr=None,
bias_attr=None,
act=None,
is_test=False,
dtype="float32"):
super(FC, self).__init__(name_scope, dtype)
self._size = size
self._num_flatten_dims = num_flatten_dims
self._epsilon = epsilon
self._dtype = dtype
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
self.__g = list()
self.__v = list()
@property
def _v(self, i=0):
return self.__v[i]
@property
def _g(self, i=0):
return self.__g[i]
@_v.setter
def _v(self, value, i=0):
assert isinstance(value, Parameter)
self.__v[i] = value
@_g.setter
def _g(self, value, i=0):
assert isinstance(value, Parameter)
self.__g[i] = value
def _build_once(self, input):
i = 0
for inp, param in self._helper.iter_inputs_and_params(
input, self._param_attr):
input_shape = inp.shape
param_shape = [
reduce(lambda a, b: a * b,
input_shape[self._num_flatten_dims:], 1)
] + [self._size]
self.__v.append(
self.add_parameter(
"_v%d" % i,
self.create_parameter(
attr=param,
shape=param_shape,
dtype=self._dtype,
is_bias=False)))
magnitude_shape = param_shape[1:]
magnitude_value = np.linalg.norm(
self.__v[i].numpy(), ord=2, axis=0)
self.__g.append(
self.add_parameter(
"_g%d" % i,
self.create_parameter(
attr=fluid.ParamAttr(initializer=fluid.initializer.
NumpyArrayInitializer(
magnitude_value)),
shape=magnitude_shape,
dtype=self._dtype,
is_bias=False)))
i += 1
size = list([self._size])
self._b = self.create_parameter(
attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
def forward(self, input):
mul_results = list()
i = 0
for inp, param in self._helper.iter_inputs_and_params(
input, self._param_attr):
v_norm = self._helper.create_variable_for_type_inference(
self._dtype)
v_normalized = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="norm",
inputs={"X": self.__v[i]},
outputs={"Out": v_normalized,
"Norm": v_norm},
attrs={"axis": 0,
"epsilon": self._epsilon})
weight = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="elementwise_mul",
inputs={"X": [v_normalized],
"Y": [self.__g[i]]},
outputs={"Out": [weight]},
attrs={"axis": 1})
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": inp,
"Y": weight},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1
})
i += 1
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
if self._b:
pre_activation = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type="elementwise_add",
inputs={"X": [pre_bias],
"Y": [self._b]},
outputs={"Out": [pre_activation]},
attrs={"axis": self._num_flatten_dims})
else:
pre_activation = pre_bias
# Currently, we don't support inplace in dygraph mode
return self._helper.append_activation(pre_activation, act=self._act)
class Conv2D(dg.Layer):
"""
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
Filter is in MCHW format, where M is the number of output image channels,
C is the number of input image channels, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input image channels divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`
for more detials.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma ((Vg) \\ast X + b)
Where:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`V`: Filter direction value, a tensor with MCHW format.
* :math:`g`: Filter magnitude value, a tensor with M format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
name_scope(str) : The name for this class.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D
import numpy as np
data = np.random.uniform( -1, 1, [10, 3, 32, 32] ).astype('float32')
with fluid.dygraph.guard():
conv2d = Conv2D( "conv2d", 2, 3)
data = to_variable( data )
conv = conv2d( data )
"""
def __init__(self,
name_scope,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
epsilon=1e-30,
dtype="float32"):
assert param_attr is not False, "param_attr should not be False here."
super(Conv2D, self).__init__(name_scope, dtype)
self._groups = groups
self._stride = utils.convert_to_list(stride, 2, "stride")
self._padding = utils.convert_to_list(padding, 2, "padding")
self._dilation = utils.convert_to_list(dilation, 2, "dilation")
self._act = act
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
self._use_cudnn = use_cudnn
self._filter_size = filter_size
self._num_filters = num_filters
self._param_attr = param_attr
self._bias_attr = bias_attr
self._epsilon = epsilon
self._dtype = dtype
# if (self._num_channels == self._groups and
# num_filters % self._num_channels == 0 and not self._use_cudnn):
# self._l_type = 'depthwise_conv2d'
# else:
# TODO(jiabin): recover the usage of depthwise_conv2d when it's
# kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17275
self._l_type = "conv2d"
def _build_once(self, input):
self._num_channels = input.shape[1]
if self._groups is None:
num_filter_channels = self._num_channels
else:
if self._num_channels % self._groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = self._num_channels // self._groups
filter_size = utils.convert_to_list(self._filter_size, 2,
"filter_size")
filter_shape = [self._num_filters, int(num_filter_channels)
] + filter_size
def _get_default_param_initializer():
filter_elem_num = filter_size[0] * filter_size[
1] * self._num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
# weight_v
self._filter_param_v = self.create_parameter(
attr=self._param_attr,
shape=filter_shape,
dtype=self._dtype,
default_initializer=_get_default_param_initializer())
# weight_g
norm_value = _norm(
self._filter_param_v.numpy(), dim=0) # CAUTION: hard-code
self._filter_param_g = self.create_parameter(
attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
norm_value)),
shape=norm_value.shape,
dtype=self._dtype,
default_initializer=_get_default_param_initializer())
if self._use_cudnn:
self.create_variable(
name="kCUDNNFwdAlgoCache",
persistable=True,
type=core.VarDesc.VarType.RAW)
self.create_variable(
name="kCUDNNBwdDataAlgoCache",
persistable=True,
type=core.VarDesc.VarType.RAW)
self.create_variable(
name="kCUDNNBwdFilterAlgoCache",
persistable=True,
type=core.VarDesc.VarType.RAW)
self._bias_param = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
matrix = self._helper.create_variable_for_type_inference(self._dtype)
tmp = self._helper.create_variable_for_type_inference(self._dtype)
new_shape = [
self._filter_param_v.shape[0],
reduce(lambda x, y: x * y, self._filter_param_v.shape[1:], 1),
]
self._helper.append_op(
type="reshape2",
inputs={"X": self._filter_param_v},
attrs={"shape": new_shape},
outputs={"Out": matrix,
"XShape": tmp})
m_norm = self._helper.create_variable_for_type_inference(self._dtype)
m_normalized = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="norm",
inputs={"X": matrix},
outputs={"Out": m_normalized,
"Norm": m_norm},
attrs={"axis": 1,
"epsilon": self._epsilon})
v_normalized = self._helper.create_variable_for_type_inference(
self._dtype)
tmp2 = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="reshape2",
inputs={"X": m_normalized},
attrs={"shape": self._filter_param_v.shape},
outputs={"Out": v_normalized,
"XShape": tmp2})
filter_param = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="elementwise_mul",
inputs={"X": [v_normalized],
"Y": [self._filter_param_g]},
outputs={"Out": [filter_param]},
attrs={"axis": 0}, # CAUTION: hard-code
)
pre_bias = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type=self._l_type,
inputs={"Input": input,
"Filter": filter_param},
outputs={"Output": pre_bias},
attrs={
"strides": self._stride,
"paddings": self._padding,
"dilations": self._dilation,
"groups": self._groups if self._groups else 1,
"use_cudnn": self._use_cudnn,
"use_mkldnn": False,
})
if self._bias_param is not None:
pre_act = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type="elementwise_add",
inputs={"X": [pre_bias],
"Y": [self._bias_param]},
outputs={"Out": [pre_act]},
attrs={"axis": 1})
else:
pre_act = pre_bias
# Currently, we don't support inplace in dygraph mode
return self._helper.append_activation(pre_act, act=self._act)
class Conv2DTranspose(dg.Layer):
"""
**Convlution2D transpose layer**
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references
`therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma ((Vg) \\ast X + b)
Where:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`V`: Filter value, a tensor with MCHW format.
* :math:`g`: Filter value, a tensor with M format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Args:
name_scope(str): The name of this class.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). None if use
filter_size, padding, and stride to calculate output_size.
if output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size. Default: None.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups = 1.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
Returns:
Variable: The tensor variable storing the convolution transpose result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
with fluid.dygraph.guard():
data = numpy.random.random((3, 32, 32)).astype('float32')
conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
'Conv2DTranspose', num_filters=2, filter_size=3)
ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))
"""
def __init__(self,
name_scope,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
epsilon=1e-30,
act=None,
dtype="float32"):
super(Conv2DTranspose, self).__init__(name_scope, dtype)
assert (param_attr is not False
), "param_attr should not be False in conv2d_transpose."
self._param_attr = param_attr
self._bias_attr = bias_attr
self._groups = groups
self._num_filters = num_filters
self._use_cudnn = use_cudnn
self._padding = padding
self._stride = stride
self._dilation = dilation
self._filter_size = filter_size
self._output_size = output_size
self._op_type = "conv2d_transpose"
self._epsilon = epsilon
def _build_once(self, input):
input_channel = input.shape[1]
if (input_channel == self._groups and
self._num_filters == input_channel and not self._use_cudnn):
self._op_type = "depthwise_conv2d_transpose"
if not isinstance(input, Variable):
raise TypeError("Input of conv2d_transpose must be Variable")
self._padding = utils.convert_to_list(self._padding, 2, "padding")
self._stride = utils.convert_to_list(self._stride, 2, "stride")
self._dilation = utils.convert_to_list(self._dilation, 2, "dilation")
if not isinstance(self._use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
if self._filter_size is None:
if self._output_size is None:
raise ValueError(
"output_size must be set when filter_size is None")
if isinstance(self._output_size, int):
self._output_size = [self._output_size, self._output_size]
h_in = input.shape[2]
w_in = input.shape[3]
filter_size_h = (self._output_size[0] -
(h_in - 1) * self._stride[0] + 2 *
self._padding[0] - 1) // self._dilation[0] + 1
filter_size_w = (self._output_size[1] -
(w_in - 1) * self._stride[1] + 2 *
self._padding[1] - 1) // self._dilation[1] + 1
self._filter_size = [filter_size_h, filter_size_w]
else:
self._filter_size = utils.convert_to_list(
self._filter_size, 2, "conv2d_transpose.filter_size")
if self._output_size is None:
self._output_size = []
elif isinstance(self._output_size, list) or isinstance(
self._output_size, int):
self._output_size = utils.convert_to_list(self._output_size, 2,
"output_size")
else:
raise ValueError("output_size should be list or int")
self._padding = utils.convert_to_list(self._padding, 2, "padding")
self._groups = 1 if self._groups is None else self._groups
filter_shape = [
input_channel,
self._num_filters // self._groups,
] + self._filter_size
# img filter v (direction)
self._img_filter_v = self.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=self._param_attr)
# img filter g (magnitude)
img_filter_magnitude = _norm(
self._img_filter_v.numpy(), dim=0) # CAUTION: hard-code
self._img_filter_g = self.create_parameter(
dtype=input.dtype,
shape=img_filter_magnitude.shape,
attr=fluid.ParamAttr(
initializer=NumpyArrayInitializer(img_filter_magnitude)))
self._img_bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
matrix = self._helper.create_variable_for_type_inference(self._dtype)
tmp = self._helper.create_variable_for_type_inference(self._dtype)
new_shape = [
self._img_filter_v.shape[0],
reduce(lambda x, y: x * y, self._img_filter_v.shape[1:], 1),
]
self._helper.append_op(
type="reshape2",
inputs={"X": self._img_filter_v},
attrs={"shape": new_shape},
outputs={"Out": matrix,
"XShape": tmp})
m_norm = self._helper.create_variable_for_type_inference(self._dtype)
m_normalized = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="norm",
inputs={"X": matrix},
outputs={"Out": m_normalized,
"Norm": m_norm},
attrs={"axis": 1,
"epsilon": self._epsilon})
v_normalized = self._helper.create_variable_for_type_inference(
self._dtype)
tmp2 = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="reshape2",
inputs={"X": m_normalized},
attrs={"shape": self._img_filter_v.shape},
outputs={"Out": v_normalized,
"XShape": tmp2})
img_filter = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="elementwise_mul",
inputs={"X": [v_normalized],
"Y": [self._img_filter_g]},
outputs={"Out": [img_filter]},
attrs={"axis": 0}, # CAUTION: hard-code
)
pre_bias = self._helper.create_variable_for_type_inference(
dtype=input.dtype)
self._helper.append_op(
type=self._op_type,
inputs={"Input": [input],
"Filter": [img_filter]},
outputs={"Output": pre_bias},
attrs={
"output_size": self._output_size,
"strides": self._stride,
"paddings": self._padding,
"dilations": self._dilation,
"groups": self._groups,
"use_cudnn": self._use_cudnn,
})
if self._img_bias is not None:
pre_act = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type="elementwise_add",
inputs={"X": [pre_bias],
"Y": [self._img_bias]},
outputs={"Out": [pre_act]},
attrs={"axis": 1})
else:
pre_act = pre_bias
out = self._helper.append_activation(pre_act)
return out

View File

@ -26,6 +26,7 @@ def FC(name_scope,
in_features, in_features,
size, size,
num_flatten_dims=1, num_flatten_dims=1,
relu=False,
dropout=0.0, dropout=0.0,
epsilon=1e-30, epsilon=1e-30,
act=None, act=None,
@ -39,7 +40,11 @@ def FC(name_scope,
# stds # stds
if isinstance(in_features, int): if isinstance(in_features, int):
in_features = [in_features] in_features = [in_features]
stds = [np.sqrt((1 - dropout) / in_feature) for in_feature in in_features] stds = [np.sqrt((1 - dropout) / in_feature) for in_feature in in_features]
if relu:
stds = [std * np.sqrt(2.0) for std in stds]
weight_inits = [ weight_inits = [
fluid.initializer.NormalInitializer(scale=std) for std in stds fluid.initializer.NormalInitializer(scale=std) for std in stds
] ]
@ -456,3 +461,152 @@ class PositionEmbedding(dg.Layer):
return out return out
else: else:
raise Exception("Then you can just use position rate at init") raise Exception("Then you can just use position rate at init")
class Conv1D_GU(dg.Layer):
def __init__(self,
name_scope,
conditioner_dim,
in_channels,
num_filters,
filter_size,
dilation,
causal=False,
residual=True,
dtype="float32"):
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
self.conditioner_dim = conditioner_dim
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channels should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
dtype=dtype)
self.fc = Conv1D(
self.full_name(),
conditioner_dim,
2 * num_filters,
filter_size=1,
dilation=1,
causal=False,
dtype=dtype)
def forward(self, x, skip=None, conditioner=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1D_GU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
skip (Variable): Shape(B, C_in, 1, T), skip connection.
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
conditioner, where C_con is conditioner hidden dim which
equals the num of mel bands. Note that when using residual
connection, the Conv1D_GU does not change the number of
channels, so out channels equals input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1D_GU, where
C_out means the output channels of Conv1D_GU.
skip (Variable): Shape(B, C_out, 1, T), skip connection.
"""
residual = x
x = self.conv(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def add_input(self, x, skip=None, conditioner=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
skip: shape(B, num_filters, 1, time_steps), skip connection
conditioner: shape(B, conditioner_dim, 1, time_steps)
Outputs:
x: shape(B, num_filters, 1, time_steps), where time_steps = 1
skip: skip connection, same shape as x
"""
residual = x
# add step input and produce step output
x = self.conv.add_input(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def Conv2DTranspose(name_scope,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
use_cudnn=True,
act=None,
dtype="float32"):
val = 1.0 / (filter_size[0] * filter_size[1])
weight_init = fluid.initializer.ConstantInitializer(val)
weight_attr = fluid.ParamAttr(initializer=weight_init)
layer = weight_norm.Conv2DTranspose(
name_scope,
num_filters,
filter_size=filter_size,
padding=padding,
stride=stride,
dilation=dilation,
param_attr=weight_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer