Parakeet/parakeet/data/datacargo.py

127 lines
4.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
from .sampler import SequentialSampler, RandomSampler, BatchSampler
class DataCargo(object):
def __init__(self,
dataset,
batch_fn=None,
batch_size=1,
sampler=None,
shuffle=False,
batch_sampler=None,
drop_last=False):
"""An Iterable object of batches. It requires a dataset, a batch function and a sampler. The sampler yields the example ids, then the corresponding examples in the dataset are collected and transformed into a batch with the batch function.
Args:
dataset (Dataset): the dataset used to build a data cargo.
batch_fn (callable, optional): a callable that takes a list of examples of `dataset` and return a batch, it can be None if the dataset has a `_batch_examples` method which satisfy the requirement. Defaults to None.
batch_size (int, optional): number of examples in a batch. Defaults to 1.
sampler (Sampler, optional): an iterable of example ids(intergers), the example ids are used to pick examples. Defaults to None.
shuffle (bool, optional): when sampler is not provided, shuffle = True creates a RandomSampler and shuffle=False creates a SequentialSampler internally. Defaults to False.
batch_sampler (BatchSampler, optional): an iterable of lists of example ids(intergers), the list is used to pick examples, `batch_sampler` option is mutually exclusive with `batch_size`, `shuffle`, `sampler`, and `drop_last`. Defaults to None.
drop_last (bool, optional): whether to drop the last minibatch. Defaults to False.
"""
self.dataset = dataset
self.batch_fn = batch_fn or self.dataset._batch_examples
if batch_sampler is not None:
# auto_collation with custom batch_sampler
if batch_size != 1 or shuffle or sampler is not None or drop_last:
raise ValueError('batch_sampler option is mutually exclusive '
'with batch_size, shuffle, sampler, and '
'drop_last')
batch_size = None
drop_last = False
shuffle = False
elif batch_size is None:
raise ValueError(
'batch sampler is none. then batch size must not be none.')
elif sampler is None:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
else:
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
self.batch_size = batch_size
self.drop_last = drop_last
self.sampler = sampler
self.batch_sampler = batch_sampler
def __iter__(self):
return DataIterator(self)
def __call__(self):
# protocol for paddle's DataLoader
return DataIterator(self)
@property
def _auto_collation(self):
# use auto batching
return self.batch_sampler is not None
@property
def _index_sampler(self):
if self._auto_collation:
return self.batch_sampler
else:
return self.sampler
def __len__(self):
return len(self._index_sampler)
class DataIterator(object):
def __init__(self, loader):
"""Iterator object of DataCargo.
Args:
loader (DataCargo): the data cargo to iterate.
"""
self.loader = loader
self._dataset = loader.dataset
self._batch_fn = loader.batch_fn
self._index_sampler = loader._index_sampler
self._sampler_iter = iter(self._index_sampler)
def __iter__(self):
return self
def __next__(self):
# TODO(chenfeiyu): use dynamic batch size
index = self._next_index()
minibatch = [self._dataset[i] for i in index]
minibatch = self._batch_fn(minibatch) # list[Example] -> Batch
return minibatch
next = __next__ # Python 2 compatibility
def _next_index(self):
if six.PY3:
return next(self._sampler_iter)
else:
# six.PY2
return self._sampler_iter.next()
def __len__(self):
return len(self._index_sampler)