django1/django/contrib/gis/gdal/raster/const.py

46 lines
1.5 KiB
Python
Raw Normal View History

"""
GDAL - Constant definitions
"""
from ctypes import (
c_double, c_float, c_int16, c_int32, c_ubyte, c_uint16, c_uint32,
)
# See http://www.gdal.org/gdal_8h.html#a22e22ce0a55036a96f652765793fb7a4
GDAL_PIXEL_TYPES = {
0: 'GDT_Unknown', # Unknown or unspecified type
1: 'GDT_Byte', # Eight bit unsigned integer
2: 'GDT_UInt16', # Sixteen bit unsigned integer
3: 'GDT_Int16', # Sixteen bit signed integer
4: 'GDT_UInt32', # Thirty-two bit unsigned integer
5: 'GDT_Int32', # Thirty-two bit signed integer
6: 'GDT_Float32', # Thirty-two bit floating point
7: 'GDT_Float64', # Sixty-four bit floating point
8: 'GDT_CInt16', # Complex Int16
9: 'GDT_CInt32', # Complex Int32
10: 'GDT_CFloat32', # Complex Float32
11: 'GDT_CFloat64', # Complex Float64
}
# A list of gdal datatypes that are integers.
GDAL_INTEGER_TYPES = [1, 2, 3, 4, 5]
# Lookup values to convert GDAL pixel type indices into ctypes objects.
# The GDAL band-io works with ctypes arrays to hold data to be written
# or to hold the space for data to be read into. The lookup below helps
# selecting the right ctypes object for a given gdal pixel type.
GDAL_TO_CTYPES = [
None, c_ubyte, c_uint16, c_int16, c_uint32, c_int32,
c_float, c_double, None, None, None, None
]
# List of resampling algorithms that can be used to warp a GDALRaster.
GDAL_RESAMPLE_ALGORITHMS = {
'NearestNeighbour': 0,
'Bilinear': 1,
'Cubic': 2,
'CubicSpline': 3,
'Lanczos': 4,
'Average': 5,
'Mode': 6,
}