Fixed #14445 - Use HMAC and constant-time comparison functions where needed.
All adhoc MAC applications have been updated to use HMAC, using SHA1 to
generate unique keys for each application based on the SECRET_KEY, which is
common practice for this situation. In all cases, backwards compatibility
with existing hashes has been maintained, aiming to phase this out as per
the normal deprecation process. In this way, under most normal
circumstances the old hashes will have expired (e.g. by session expiration
etc.) before they become invalid.
In the case of the messages framework and the cookie backend, which was
already using HMAC, there is the possibility of a backwards incompatibility
if the SECRET_KEY is shorter than the default 50 bytes, but the low
likelihood and low impact meant compatibility code was not worth it.
All known instances where tokens/hashes were compared using simple string
equality, which could potentially open timing based attacks, have also been
fixed using a constant-time comparison function.
There are no known practical attacks against the existing implementations,
so these security improvements will not be backported.
git-svn-id: http://code.djangoproject.com/svn/django/trunk@14218 bcc190cf-cafb-0310-a4f2-bffc1f526a37
2010-10-15 04:54:30 +08:00
|
|
|
"""
|
|
|
|
Django's standard crypto functions and utilities.
|
|
|
|
"""
|
|
|
|
import hmac
|
|
|
|
|
|
|
|
from django.conf import settings
|
2010-10-15 19:11:08 +08:00
|
|
|
from django.utils.hashcompat import sha_constructor, sha_hmac
|
Fixed #14445 - Use HMAC and constant-time comparison functions where needed.
All adhoc MAC applications have been updated to use HMAC, using SHA1 to
generate unique keys for each application based on the SECRET_KEY, which is
common practice for this situation. In all cases, backwards compatibility
with existing hashes has been maintained, aiming to phase this out as per
the normal deprecation process. In this way, under most normal
circumstances the old hashes will have expired (e.g. by session expiration
etc.) before they become invalid.
In the case of the messages framework and the cookie backend, which was
already using HMAC, there is the possibility of a backwards incompatibility
if the SECRET_KEY is shorter than the default 50 bytes, but the low
likelihood and low impact meant compatibility code was not worth it.
All known instances where tokens/hashes were compared using simple string
equality, which could potentially open timing based attacks, have also been
fixed using a constant-time comparison function.
There are no known practical attacks against the existing implementations,
so these security improvements will not be backported.
git-svn-id: http://code.djangoproject.com/svn/django/trunk@14218 bcc190cf-cafb-0310-a4f2-bffc1f526a37
2010-10-15 04:54:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
def salted_hmac(key_salt, value, secret=None):
|
|
|
|
"""
|
|
|
|
Returns the HMAC-SHA1 of 'value', using a key generated from key_salt and a
|
|
|
|
secret (which defaults to settings.SECRET_KEY).
|
|
|
|
|
|
|
|
A different key_salt should be passed in for every application of HMAC.
|
|
|
|
"""
|
|
|
|
if secret is None:
|
|
|
|
secret = settings.SECRET_KEY
|
|
|
|
|
|
|
|
# We need to generate a derived key from our base key. We can do this by
|
|
|
|
# passing the key_salt and our base key through a pseudo-random function and
|
|
|
|
# SHA1 works nicely.
|
|
|
|
|
|
|
|
key = sha_constructor(key_salt + secret).digest()
|
|
|
|
|
|
|
|
# If len(key_salt + secret) > sha_constructor().block_size, the above
|
|
|
|
# line is redundant and could be replaced by key = key_salt + secret, since
|
|
|
|
# the hmac module does the same thing for keys longer than the block size.
|
|
|
|
# However, we need to ensure that we *always* do this.
|
|
|
|
|
2010-10-15 19:11:08 +08:00
|
|
|
return hmac.new(key, msg=value, digestmod=sha_hmac)
|
Fixed #14445 - Use HMAC and constant-time comparison functions where needed.
All adhoc MAC applications have been updated to use HMAC, using SHA1 to
generate unique keys for each application based on the SECRET_KEY, which is
common practice for this situation. In all cases, backwards compatibility
with existing hashes has been maintained, aiming to phase this out as per
the normal deprecation process. In this way, under most normal
circumstances the old hashes will have expired (e.g. by session expiration
etc.) before they become invalid.
In the case of the messages framework and the cookie backend, which was
already using HMAC, there is the possibility of a backwards incompatibility
if the SECRET_KEY is shorter than the default 50 bytes, but the low
likelihood and low impact meant compatibility code was not worth it.
All known instances where tokens/hashes were compared using simple string
equality, which could potentially open timing based attacks, have also been
fixed using a constant-time comparison function.
There are no known practical attacks against the existing implementations,
so these security improvements will not be backported.
git-svn-id: http://code.djangoproject.com/svn/django/trunk@14218 bcc190cf-cafb-0310-a4f2-bffc1f526a37
2010-10-15 04:54:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
def constant_time_compare(val1, val2):
|
|
|
|
"""
|
|
|
|
Returns True if the two strings are equal, False otherwise.
|
|
|
|
|
|
|
|
The time taken is independent of the number of characters that match.
|
|
|
|
"""
|
|
|
|
if len(val1) != len(val2):
|
|
|
|
return False
|
|
|
|
result = 0
|
|
|
|
for x, y in zip(val1, val2):
|
|
|
|
result |= ord(x) ^ ord(y)
|
|
|
|
return result == 0
|