django1/django/core/management/__init__.py

278 lines
11 KiB
Python
Raw Normal View History

import os
import sys
from optparse import OptionParser
from imp import find_module
import django
from django.core.management.base import BaseCommand, CommandError, handle_default_options
# For backwards compatibility: get_version() used to be in this module.
get_version = django.get_version
# A cache of loaded commands, so that call_command
# doesn't have to reload every time it is called
_commands = None
def find_commands(management_dir):
"""
Given a path to a management directory, returns a list of all the command
names that are available.
Returns an empty list if no commands are defined.
"""
command_dir = os.path.join(management_dir, 'commands')
try:
return [f[:-3] for f in os.listdir(command_dir)
if not f.startswith('_') and f.endswith('.py')]
except OSError:
return []
def find_management_module(app_name):
"""
Determines the path to the management module for the application named,
without acutally importing the application or the management module.
Raises ImportError if the management module cannot be found for any reason.
"""
parts = app_name.split('.')
parts.append('management')
parts.reverse()
path = None
while parts:
part = parts.pop()
f, path, descr = find_module(part, path and [path] or None)
return path
def load_command_class(app_name, name):
"""
Given a command name and an application name, returns the Command
class instance. All errors raised by the importation process
(ImportError, AttributeError) are allowed to propagate.
"""
return getattr(__import__('%s.management.commands.%s' % (app_name, name),
{}, {}, ['Command']), 'Command')()
def get_commands(load_user_commands=True, project_directory=None):
"""
Returns a dictionary of commands against the application in which
those commands can be found. This works by looking for a
management.commands package in django.core, and in each installed
application -- if a commands package exists, all commands in that
package are registered.
Core commands are always included; user-defined commands will also
be included if ``load_user_commands`` is True. If a project directory
is provided, the startproject command will be disabled, and the
startapp command will be modified to use that directory.
The dictionary is in the format {command_name: app_name}. Key-value
pairs from this dictionary can then be used in calls to
load_command_class(app_name, command_name)
If a specific version of a command must be loaded (e.g., with the
startapp command), the instantiated module can be placed in the
dictionary in place of the application name.
The dictionary is cached on the first call, and reused on subsequent
calls.
"""
global _commands
if _commands is None:
_commands = dict([(name, 'django.core')
for name in find_commands(__path__[0])])
if load_user_commands:
# Get commands from all installed apps.
from django.conf import settings
for app_name in settings.INSTALLED_APPS:
try:
path = find_management_module(app_name)
_commands.update(dict([(name, app_name)
for name in find_commands(path)]))
except ImportError:
pass # No management module - ignore this app
if project_directory:
# Remove the "startproject" command from self.commands, because
# that's a django-admin.py command, not a manage.py command.
del _commands['startproject']
# Override the startapp command so that it always uses the
# project_directory, not the current working directory
# (which is default).
from django.core.management.commands.startapp import ProjectCommand
_commands['startapp'] = ProjectCommand(project_directory)
return _commands
def call_command(name, *args, **options):
"""
Calls the given command, with the given options and args/kwargs.
This is the primary API you should use for calling specific commands.
Some examples:
call_command('syncdb')
call_command('shell', plain=True)
call_command('sqlall', 'myapp')
"""
try:
app_name = get_commands()[name]
if isinstance(app_name, BaseCommand):
# If the command is already loaded, use it directly.
klass = app_name
else:
klass = load_command_class(app_name, name)
except KeyError:
raise CommandError, "Unknown command: %r" % name
return klass.execute(*args, **options)
class LaxOptionParser(OptionParser):
"""
An option parser that doesn't raise any errors on unknown options.
This is needed because the --settings and --pythonpath options affect
the commands (and thus the options) that are available to the user.
"""
def error(self, msg):
pass
class ManagementUtility(object):
"""
Encapsulates the logic of the django-admin.py and manage.py utilities.
A ManagementUtility has a number of commands, which can be manipulated
by editing the self.commands dictionary.
"""
def __init__(self, argv=None):
self.argv = argv or sys.argv[:]
self.prog_name = os.path.basename(self.argv[0])
self.project_directory = None
self.user_commands = False
def main_help_text(self):
"""
Returns the script's main help text, as a string.
"""
usage = ['%s <subcommand> [options] [args]' % self.prog_name]
usage.append('Django command line tool,'
' version %s' % django.get_version())
usage.append("Type '%s help <subcommand>' for help on a specific"
" subcommand." % self.prog_name)
usage.append('Available subcommands:')
commands = get_commands(self.user_commands,
self.project_directory).keys()
commands.sort()
for cmd in commands:
usage.append(' %s' % cmd)
return '\n'.join(usage)
def fetch_command(self, subcommand):
"""
Tries to fetch the given subcommand, printing a message with the
appropriate command called from the command line (usually
django-admin.py or manage.py) if it can't be found.
"""
try:
app_name = get_commands(self.user_commands,
self.project_directory)[subcommand]
if isinstance(app_name, BaseCommand):
# If the command is already loaded, use it directly.
klass = app_name
else:
klass = load_command_class(app_name, subcommand)
except KeyError:
sys.stderr.write("Unknown command: %r\nType '%s help' for"
" usage.\n" % (subcommand, self.prog_name))
sys.exit(1)
return klass
def execute(self):
"""
Given the command-line arguments, this figures out which subcommand is
being run, creates a parser appropriate to that command, and runs it.
"""
# Preprocess options to extract --settings and --pythonpath.
# These options could affect the commands that are available, so they
# must be processed early.
parser = LaxOptionParser(version=get_version(),
option_list=BaseCommand.option_list)
try:
options, args = parser.parse_args(self.argv)
handle_default_options(options)
except:
pass # Ignore any option errors at this point.
try:
subcommand = self.argv[1]
except IndexError:
sys.stderr.write("Type '%s help' for usage.\n" % self.prog_name)
sys.exit(1)
if subcommand == 'help':
if len(args) > 2:
self.fetch_command(args[2]).print_help(self.prog_name, args[2])
else:
sys.stderr.write(self.main_help_text() + '\n')
sys.exit(1)
# Special-cases: We want 'django-admin.py --version' and
# 'django-admin.py --help' to work, for backwards compatibility.
elif self.argv[1:] == ['--version']:
# LaxOptionParser already takes care of printing the version.
pass
elif self.argv[1:] == ['--help']:
sys.stderr.write(self.main_help_text() + '\n')
else:
self.fetch_command(subcommand).run_from_argv(self.argv)
class ProjectManagementUtility(ManagementUtility):
"""
A ManagementUtility that is specific to a particular Django project.
As such, its commands are slightly different than those of its parent
class.
In practice, this class represents manage.py, whereas ManagementUtility
represents django-admin.py.
"""
def __init__(self, argv, project_directory):
super(ProjectManagementUtility, self).__init__(argv)
self.project_directory = project_directory
self.user_commands = True
def setup_environ(settings_mod):
"""
Configures the runtime environment. This can also be used by external
scripts wanting to set up a similar environment to manage.py.
Returns the project directory (assuming the passed settings module is
directly in the project directory).
"""
# Add this project to sys.path so that it's importable in the conventional
# way. For example, if this file (manage.py) lives in a directory
# "myproject", this code would add "/path/to/myproject" to sys.path.
project_directory, settings_filename = os.path.split(settings_mod.__file__)
project_name = os.path.basename(project_directory)
settings_name = os.path.splitext(settings_filename)[0]
sys.path.append(os.path.join(project_directory, os.pardir))
project_module = __import__(project_name, {}, {}, [''])
sys.path.pop()
# Set DJANGO_SETTINGS_MODULE appropriately.
os.environ['DJANGO_SETTINGS_MODULE'] = '%s.%s' % (project_name,
settings_name)
return project_directory
def execute_from_command_line(argv=None):
"""
A simple method that runs a ManagementUtility.
"""
utility = ManagementUtility(argv)
utility.execute()
def execute_manager(settings_mod, argv=None):
"""
Like execute_from_command_line(), but for use by manage.py, a
project-specific django-admin.py utility.
"""
project_directory = setup_environ(settings_mod)
utility = ProjectManagementUtility(argv, project_directory)
utility.execute()