2015-02-08 23:21:48 +08:00
|
|
|
=========================================
|
|
|
|
PostgreSQL specific aggregation functions
|
|
|
|
=========================================
|
|
|
|
|
|
|
|
.. module:: django.contrib.postgres.aggregates
|
|
|
|
:synopsis: PostgreSQL specific aggregation functions
|
|
|
|
|
2018-12-25 05:36:00 +08:00
|
|
|
These functions are available from the ``django.contrib.postgres.aggregates``
|
|
|
|
module. They are described in more detail in the `PostgreSQL docs
|
2016-10-25 23:43:32 +08:00
|
|
|
<https://www.postgresql.org/docs/current/static/functions-aggregate.html>`_.
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
All functions come without default aliases, so you must explicitly provide
|
|
|
|
one. For example::
|
|
|
|
|
|
|
|
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
|
|
|
|
{'arr': [0, 1, 2]}
|
|
|
|
|
2018-11-27 23:57:26 +08:00
|
|
|
.. admonition:: Common aggregate options
|
|
|
|
|
|
|
|
All aggregates have the :ref:`filter <aggregate-filter>` keyword
|
|
|
|
argument.
|
|
|
|
|
2015-02-08 23:21:48 +08:00
|
|
|
General-purpose aggregation functions
|
2016-01-03 18:56:22 +08:00
|
|
|
=====================================
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``ArrayAgg``
|
|
|
|
------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2016-07-05 17:47:24 +08:00
|
|
|
.. class:: ArrayAgg(expression, distinct=False, filter=None, ordering=(), **extra)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns a list of values, including nulls, concatenated into an array.
|
|
|
|
|
2017-01-23 23:34:42 +08:00
|
|
|
.. attribute:: distinct
|
|
|
|
|
|
|
|
An optional boolean argument that determines if array values
|
|
|
|
will be distinct. Defaults to ``False``.
|
|
|
|
|
2016-07-05 17:47:24 +08:00
|
|
|
.. attribute:: ordering
|
|
|
|
|
|
|
|
.. versionadded:: 2.2
|
|
|
|
|
|
|
|
An optional string of a field name (with an optional ``"-"`` prefix
|
|
|
|
which indicates descending order) or an expression (or a tuple or list
|
|
|
|
of strings and/or expressions) that specifies the ordering of the
|
|
|
|
elements in the result list.
|
|
|
|
|
|
|
|
Examples::
|
|
|
|
|
|
|
|
'some_field'
|
|
|
|
'-some_field'
|
|
|
|
from django.db.models import F
|
|
|
|
F('some_field').desc()
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``BitAnd``
|
|
|
|
----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: BitAnd(expression, filter=None, **extra)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns an ``int`` of the bitwise ``AND`` of all non-null input values, or
|
|
|
|
``None`` if all values are null.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``BitOr``
|
|
|
|
---------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: BitOr(expression, filter=None, **extra)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns an ``int`` of the bitwise ``OR`` of all non-null input values, or
|
|
|
|
``None`` if all values are null.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``BoolAnd``
|
|
|
|
-----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: BoolAnd(expression, filter=None, **extra)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns ``True``, if all input values are true, ``None`` if all values are
|
|
|
|
null or if there are no values, otherwise ``False`` .
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``BoolOr``
|
|
|
|
----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: BoolOr(expression, filter=None, **extra)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns ``True`` if at least one input value is true, ``None`` if all
|
|
|
|
values are null or if there are no values, otherwise ``False``.
|
|
|
|
|
2016-11-13 04:42:20 +08:00
|
|
|
``JSONBAgg``
|
|
|
|
------------
|
2016-09-26 19:16:03 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: JSONBAgg(expressions, filter=None, **extra)
|
2016-09-26 19:16:03 +08:00
|
|
|
|
2016-11-13 04:42:20 +08:00
|
|
|
Returns the input values as a ``JSON`` array. Requires PostgreSQL ≥ 9.5.
|
2016-09-26 19:16:03 +08:00
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``StringAgg``
|
|
|
|
-------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2016-07-05 17:47:24 +08:00
|
|
|
.. class:: StringAgg(expression, delimiter, distinct=False, filter=None, ordering=())
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the input values concatenated into a string, separated by
|
|
|
|
the ``delimiter`` string.
|
|
|
|
|
|
|
|
.. attribute:: delimiter
|
|
|
|
|
|
|
|
Required argument. Needs to be a string.
|
|
|
|
|
2016-05-15 17:53:16 +08:00
|
|
|
.. attribute:: distinct
|
|
|
|
|
|
|
|
An optional boolean argument that determines if concatenated values
|
|
|
|
will be distinct. Defaults to ``False``.
|
|
|
|
|
2016-07-05 17:47:24 +08:00
|
|
|
.. attribute:: ordering
|
|
|
|
|
|
|
|
.. versionadded:: 2.2
|
|
|
|
|
|
|
|
An optional string of a field name (with an optional ``"-"`` prefix
|
|
|
|
which indicates descending order) or an expression (or a tuple or list
|
|
|
|
of strings and/or expressions) that specifies the ordering of the
|
|
|
|
elements in the result string.
|
|
|
|
|
|
|
|
Examples are the same as for :attr:`ArrayAgg.ordering`.
|
|
|
|
|
2015-02-08 23:21:48 +08:00
|
|
|
Aggregate functions for statistics
|
2016-01-03 18:56:22 +08:00
|
|
|
==================================
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
``y`` and ``x``
|
2016-01-03 18:56:22 +08:00
|
|
|
---------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
The arguments ``y`` and ``x`` for all these functions can be the name of a
|
|
|
|
field or an expression returning a numeric data. Both are required.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``Corr``
|
|
|
|
--------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: Corr(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the correlation coefficient as a ``float``, or ``None`` if there
|
|
|
|
aren't any matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``CovarPop``
|
|
|
|
------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: CovarPop(y, x, sample=False, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the population covariance as a ``float``, or ``None`` if there
|
|
|
|
aren't any matching rows.
|
|
|
|
|
|
|
|
Has one optional argument:
|
|
|
|
|
|
|
|
.. attribute:: sample
|
|
|
|
|
|
|
|
By default ``CovarPop`` returns the general population covariance.
|
|
|
|
However, if ``sample=True``, the return value will be the sample
|
|
|
|
population covariance.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrAvgX``
|
|
|
|
------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrAvgX(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the average of the independent variable (``sum(x)/N``) as a
|
|
|
|
``float``, or ``None`` if there aren't any matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrAvgY``
|
|
|
|
------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrAvgY(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2016-03-27 05:34:18 +08:00
|
|
|
Returns the average of the dependent variable (``sum(y)/N``) as a
|
2015-02-08 23:21:48 +08:00
|
|
|
``float``, or ``None`` if there aren't any matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrCount``
|
|
|
|
-------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrCount(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns an ``int`` of the number of input rows in which both expressions
|
|
|
|
are not null.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrIntercept``
|
|
|
|
-----------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrIntercept(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the y-intercept of the least-squares-fit linear equation determined
|
|
|
|
by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
|
|
|
|
matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrR2``
|
|
|
|
----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrR2(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the square of the correlation coefficient as a ``float``, or
|
|
|
|
``None`` if there aren't any matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrSlope``
|
|
|
|
-------------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrSlope(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns the slope of the least-squares-fit linear equation determined
|
|
|
|
by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
|
|
|
|
matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrSXX``
|
|
|
|
-----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrSXX(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns ``sum(x^2) - sum(x)^2/N`` ("sum of squares" of the independent
|
|
|
|
variable) as a ``float``, or ``None`` if there aren't any matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrSXY``
|
|
|
|
-----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrSXY(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns ``sum(x*y) - sum(x) * sum(y)/N`` ("sum of products" of independent
|
|
|
|
times dependent variable) as a ``float``, or ``None`` if there aren't any
|
|
|
|
matching rows.
|
|
|
|
|
2016-01-25 05:26:11 +08:00
|
|
|
``RegrSYY``
|
|
|
|
-----------
|
2015-02-08 23:21:48 +08:00
|
|
|
|
2017-04-22 23:44:51 +08:00
|
|
|
.. class:: RegrSYY(y, x, filter=None)
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
Returns ``sum(y^2) - sum(y)^2/N`` ("sum of squares" of the dependent
|
|
|
|
variable) as a ``float``, or ``None`` if there aren't any matching rows.
|
|
|
|
|
|
|
|
Usage examples
|
2016-01-03 18:56:22 +08:00
|
|
|
==============
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
We will use this example table::
|
|
|
|
|
|
|
|
| FIELD1 | FIELD2 | FIELD3 |
|
|
|
|
|--------|--------|--------|
|
|
|
|
| foo | 1 | 13 |
|
|
|
|
| bar | 2 | (null) |
|
|
|
|
| test | 3 | 13 |
|
|
|
|
|
|
|
|
|
|
|
|
Here's some examples of some of the general-purpose aggregation functions::
|
|
|
|
|
|
|
|
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
|
|
|
|
{'result': 'foo;bar;test'}
|
|
|
|
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
|
|
|
|
{'result': [1, 2, 3]}
|
|
|
|
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
|
|
|
|
{'result': ['foo', 'bar', 'test']}
|
|
|
|
|
|
|
|
The next example shows the usage of statistical aggregate functions. The
|
|
|
|
underlying math will be not described (you can read about this, for example, at
|
2015-08-08 18:02:32 +08:00
|
|
|
`wikipedia <https://en.wikipedia.org/wiki/Regression_analysis>`_)::
|
2015-02-08 23:21:48 +08:00
|
|
|
|
|
|
|
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
|
|
|
|
{'count': 2}
|
|
|
|
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
|
|
|
|
... avgy=RegrAvgY(y='field3', x='field2'))
|
|
|
|
{'avgx': 2, 'avgy': 13}
|