""" Django's standard crypto functions and utilities. """ import hashlib import hmac import secrets from django.conf import settings from django.utils.encoding import force_bytes def salted_hmac(key_salt, value, secret=None): """ Return the HMAC-SHA1 of 'value', using a key generated from key_salt and a secret (which defaults to settings.SECRET_KEY). A different key_salt should be passed in for every application of HMAC. """ if secret is None: secret = settings.SECRET_KEY key_salt = force_bytes(key_salt) secret = force_bytes(secret) # We need to generate a derived key from our base key. We can do this by # passing the key_salt and our base key through a pseudo-random function and # SHA1 works nicely. key = hashlib.sha1(key_salt + secret).digest() # If len(key_salt + secret) > block size of the hash algorithm, the above # line is redundant and could be replaced by key = key_salt + secret, since # the hmac module does the same thing for keys longer than the block size. # However, we need to ensure that we *always* do this. return hmac.new(key, msg=force_bytes(value), digestmod=hashlib.sha1) def get_random_string(length=12, allowed_chars='abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'): """ Return a securely generated random string. The default length of 12 with the a-z, A-Z, 0-9 character set returns a 71-bit value. log_2((26+26+10)^12) =~ 71 bits """ return ''.join(secrets.choice(allowed_chars) for i in range(length)) def constant_time_compare(val1, val2): """Return True if the two strings are equal, False otherwise.""" return secrets.compare_digest(force_bytes(val1), force_bytes(val2)) def pbkdf2(password, salt, iterations, dklen=0, digest=None): """Return the hash of password using pbkdf2.""" if digest is None: digest = hashlib.sha256 dklen = dklen or None password = force_bytes(password) salt = force_bytes(salt) return hashlib.pbkdf2_hmac(digest().name, password, salt, iterations, dklen)