import re import os import sys from django.utils import datetime_safe, importlib from django.utils.six.moves import input from django.db.migrations import operations from django.db.migrations.migration import Migration from django.db.models.loading import cache class MigrationAutodetector(object): """ Takes a pair of ProjectStates, and compares them to see what the first would need doing to make it match the second (the second usually being the project's current state). Note that this naturally operates on entire projects at a time, as it's likely that changes interact (for example, you can't add a ForeignKey without having a migration to add the table it depends on first). A user interface may offer single-app usage if it wishes, with the caveat that it may not always be possible. """ def __init__(self, from_state, to_state, questioner=None): self.from_state = from_state self.to_state = to_state self.questioner = questioner or MigrationQuestioner() def changes(self, graph, trim_to_apps=None): """ Main entry point to produce a list of appliable changes. Takes a graph to base names on and an optional set of apps to try and restrict to (restriction is not guaranteed) """ changes = self._detect_changes() changes = self._arrange_for_graph(changes, graph) if trim_to_apps: changes = self._trim_to_apps(changes, trim_to_apps) return changes def _detect_changes(self): """ Returns a dict of migration plans which will achieve the change from from_state to to_state. The dict has app labels as keys and a list of migrations as values. The resulting migrations aren't specially named, but the names do matter for dependencies inside the set. """ # We'll store migrations as lists by app names for now self.migrations = {} old_app_cache = self.from_state.render() new_app_cache = self.to_state.render() # Prepare lists of old/new model keys that we care about # (i.e. ignoring proxy ones) old_model_keys = [ (al, mn) for al, mn in self.from_state.models.keys() if not old_app_cache.get_model(al, mn)._meta.proxy ] new_model_keys = [ (al, mn) for al, mn in self.to_state.models.keys() if not new_app_cache.get_model(al, mn)._meta.proxy ] # Adding models. Phase 1 is adding models with no outward relationships. added_models = set(new_model_keys) - set(old_model_keys) pending_add = {} for app_label, model_name in added_models: model_state = self.to_state.models[app_label, model_name] # Are there any relationships out from this model? if so, punt it to the next phase. related_fields = [] for field in new_app_cache.get_model(app_label, model_name)._meta.fields: if field.rel: if field.rel.to: related_fields.append((field.name, field.rel.to._meta.app_label.lower(), field.rel.to._meta.object_name.lower())) if hasattr(field.rel, "through") and not field.rel.though._meta.auto_created: related_fields.append((field.name, field.rel.through._meta.app_label.lower(), field.rel.through._meta.object_name.lower())) if related_fields: pending_add[app_label, model_name] = related_fields else: self.add_to_migration( app_label, operations.CreateModel( name=model_state.name, fields=model_state.fields, options=model_state.options, bases=model_state.bases, ) ) # Phase 2 is progressively adding pending models, splitting up into two # migrations if required. pending_new_fks = [] while pending_add: # Is there one we can add that has all dependencies satisfied? satisfied = [(m, rf) for m, rf in pending_add.items() if all((al, mn) not in pending_add for f, al, mn in rf)] if satisfied: (app_label, model_name), related_fields = sorted(satisfied)[0] model_state = self.to_state.models[app_label, model_name] self.add_to_migration( app_label, operations.CreateModel( name=model_state.name, fields=model_state.fields, options=model_state.options, bases=model_state.bases, ) ) for field_name, other_app_label, other_model_name in related_fields: if app_label != other_app_label: self.add_dependency(app_label, other_app_label) del pending_add[app_label, model_name] # Ah well, we'll need to split one. Pick deterministically. else: (app_label, model_name), related_fields = sorted(pending_add.items())[0] model_state = self.to_state.models[app_label, model_name] # Work out the fields that need splitting out bad_fields = dict((f, (al, mn)) for f, al, mn in related_fields if (al, mn) in pending_add) # Create the model, without those self.add_to_migration( app_label, operations.CreateModel( name=model_state.name, fields=[(n, f) for n, f in model_state.fields if n not in bad_fields], options=model_state.options, bases=model_state.bases, ) ) # Add the bad fields to be made in a phase 3 for field_name, (other_app_label, other_model_name) in bad_fields.items(): pending_new_fks.append((app_label, model_name, field_name, other_app_label)) del pending_add[app_label, model_name] # Phase 3 is adding the final set of FKs as separate new migrations for app_label, model_name, field_name, other_app_label in pending_new_fks: model_state = self.to_state.models[app_label, model_name] self.add_to_migration( app_label, operations.AddField( model_name=model_name, name=field_name, field=model_state.get_field_by_name(field_name), ), new=True, ) if app_label != other_app_label: self.add_dependency(app_label, other_app_label) # Removing models removed_models = set(old_model_keys) - set(new_model_keys) for app_label, model_name in removed_models: model_state = self.from_state.models[app_label, model_name] self.add_to_migration( app_label, operations.DeleteModel( model_state.name, ) ) # Changes within models kept_models = set(old_model_keys).intersection(new_model_keys) for app_label, model_name in kept_models: old_model_state = self.from_state.models[app_label, model_name] new_model_state = self.to_state.models[app_label, model_name] # New fields old_field_names = set(x for x, y in old_model_state.fields) new_field_names = set(x for x, y in new_model_state.fields) for field_name in new_field_names - old_field_names: field = new_model_state.get_field_by_name(field_name) # Scan to see if this is actually a rename! field_dec = field.deconstruct()[1:] found_rename = False for removed_field_name in (old_field_names - new_field_names): if old_model_state.get_field_by_name(removed_field_name).deconstruct()[1:] == field_dec: if self.questioner.ask_rename(model_name, removed_field_name, field_name, field): self.add_to_migration( app_label, operations.RenameField( model_name=model_name, old_name=removed_field_name, new_name=field_name, ) ) old_field_names.remove(removed_field_name) new_field_names.remove(field_name) found_rename = True break if found_rename: continue # You can't just add NOT NULL fields with no default if not field.null and not field.has_default(): field.default = self.questioner.ask_not_null_addition(field_name, model_name) self.add_to_migration( app_label, operations.AddField( model_name=model_name, name=field_name, field=field, ) ) # Old fields for field_name in old_field_names - new_field_names: self.add_to_migration( app_label, operations.RemoveField( model_name=model_name, name=field_name, ) ) # The same fields for field_name in old_field_names.intersection(new_field_names): # Did the field change? old_field_dec = old_model_state.get_field_by_name(field_name).deconstruct() new_field_dec = new_model_state.get_field_by_name(field_name).deconstruct() if old_field_dec != new_field_dec: self.add_to_migration( app_label, operations.AlterField( model_name=model_name, name=field_name, field=new_model_state.get_field_by_name(field_name), ) ) # unique_together changes if old_model_state.options.get("unique_together", set()) != new_model_state.options.get("unique_together", set()): self.add_to_migration( app_label, operations.AlterUniqueTogether( name=model_name, unique_together=new_model_state.options.get("unique_together", set()), ) ) # Alright, now add internal dependencies for app_label, migrations in self.migrations.items(): for m1, m2 in zip(migrations, migrations[1:]): m2.dependencies.append((app_label, m1.name)) # Clean up dependencies for app_label, migrations in self.migrations.items(): for migration in migrations: migration.dependencies = list(set(migration.dependencies)) return self.migrations def add_to_migration(self, app_label, operation, new=False): migrations = self.migrations.setdefault(app_label, []) if not migrations or new: subclass = type("Migration", (Migration,), {"operations": [], "dependencies": []}) instance = subclass("auto_%i" % (len(migrations) + 1), app_label) migrations.append(instance) migrations[-1].operations.append(operation) def add_dependency(self, app_label, other_app_label): """ Adds a dependency to app_label's newest migration on other_app_label's latest migration. """ if self.migrations.get(other_app_label, []): dependency = (other_app_label, self.migrations[other_app_label][-1].name) else: dependency = (other_app_label, "__first__") self.migrations[app_label][-1].dependencies.append(dependency) def _arrange_for_graph(self, changes, graph): """ Takes in a result from changes() and a MigrationGraph, and fixes the names and dependencies of the changes so they extend the graph from the leaf nodes for each app. """ leaves = graph.leaf_nodes() name_map = {} for app_label, migrations in list(changes.items()): if not migrations: continue # Find the app label's current leaf node app_leaf = None for leaf in leaves: if leaf[0] == app_label: app_leaf = leaf break # Do they want an initial migration for this app? if app_leaf is None and not self.questioner.ask_initial(app_label): # They don't. for migration in migrations: name_map[(app_label, migration.name)] = (app_label, "__first__") del changes[app_label] # Work out the next number in the sequence if app_leaf is None: next_number = 1 else: next_number = (self.parse_number(app_leaf[1]) or 0) + 1 # Name each migration for i, migration in enumerate(migrations): if i == 0 and app_leaf: migration.dependencies.append(app_leaf) if i == 0 and not app_leaf: new_name = "0001_initial" else: new_name = "%04i_%s" % (next_number, self.suggest_name(migration.operations)) name_map[(app_label, migration.name)] = (app_label, new_name) migration.name = new_name # Now fix dependencies for app_label, migrations in changes.items(): for migration in migrations: migration.dependencies = [name_map.get(d, d) for d in migration.dependencies] return changes def _trim_to_apps(self, changes, app_labels): """ Takes changes from arrange_for_graph and set of app labels and returns a modified set of changes which trims out as many migrations that are not in app_labels as possible. Note that some other migrations may still be present, as they may be required dependencies. """ # Gather other app dependencies in a first pass app_dependencies = {} for app_label, migrations in changes.items(): for migration in migrations: for dep_app_label, name in migration.dependencies: app_dependencies.setdefault(app_label, set()).add(dep_app_label) required_apps = set(app_labels) # Keep resolving till there's no change old_required_apps = None while old_required_apps != required_apps: old_required_apps = set(required_apps) for app_label in list(required_apps): required_apps.update(app_dependencies.get(app_label, set())) # Remove all migrations that aren't needed for app_label in list(changes.keys()): if app_label not in required_apps: del changes[app_label] return changes @classmethod def suggest_name(cls, ops): """ Given a set of operations, suggests a name for the migration they might represent. Names not guaranteed to be unique; they must be prefixed by a number or date. """ if len(ops) == 1: if isinstance(ops[0], operations.CreateModel): return ops[0].name.lower() elif isinstance(ops[0], operations.DeleteModel): return "delete_%s" % ops[0].name.lower() elif isinstance(ops[0], operations.AddField): return "%s_%s" % (ops[0].model_name.lower(), ops[0].name.lower()) elif isinstance(ops[0], operations.RemoveField): return "remove_%s_%s" % (ops[0].model_name.lower(), ops[0].name.lower()) elif all(isinstance(o, operations.CreateModel) for o in ops): return "_".join(sorted(o.name.lower() for o in ops)) return "auto" @classmethod def parse_number(cls, name): """ Given a migration name, tries to extract a number from the beginning of it. If no number found, returns None. """ if re.match(r"^\d+_", name): return int(name.split("_")[0]) return None class MigrationQuestioner(object): """ Gives the autodetector responses to questions it might have. This base class has a built-in noninteractive mode, but the interactive subclass is what the command-line arguments will use. """ def __init__(self, defaults=None): self.defaults = defaults or {} def ask_initial(self, app_label): "Should we create an initial migration for the app?" return self.defaults.get("ask_initial", False) def ask_not_null_addition(self, field_name, model_name): "Adding a NOT NULL field to a model" # None means quit return None def ask_rename(self, model_name, old_name, new_name, field_instance): "Was this field really renamed?" return self.defaults.get("ask_rename", False) class InteractiveMigrationQuestioner(MigrationQuestioner): def __init__(self, specified_apps=set()): self.specified_apps = specified_apps def _boolean_input(self, question, default=None): result = input("%s " % question) if not result and default is not None: return default while len(result) < 1 or result[0].lower() not in "yn": result = input("Please answer yes or no: ") return result[0].lower() == "y" def _choice_input(self, question, choices): print(question) for i, choice in enumerate(choices): print(" %s) %s" % (i + 1, choice)) result = input("Select an option: ") while True: try: value = int(result) if 0 < value <= len(choices): return value except ValueError: pass result = input("Please select a valid option: ") def ask_initial(self, app_label): "Should we create an initial migration for the app?" # If it was specified on the command line, definitely true if app_label in self.specified_apps: return True # Otherwise, we look to see if it has a migrations module # without any Python files in it, apart from __init__.py. # Apps from the new app template will have these; the python # file check will ensure we skip South ones. models_module = cache.get_app(app_label) migrations_import_path = "%s.migrations" % models_module.__package__ try: migrations_module = importlib.import_module(migrations_import_path) except ImportError: return False else: filenames = os.listdir(os.path.dirname(migrations_module.__file__)) return not any(x.endswith(".py") for x in filenames if x != "__init__.py") def ask_not_null_addition(self, field_name, model_name): "Adding a NOT NULL field to a model" choice = self._choice_input( "You are trying to add a non-nullable field '%s' to %s without a default;\n" % (field_name, model_name) + "this is not possible. Please select a fix:", [ "Provide a one-off default now (will be set on all existing rows)", "Quit, and let me add a default in models.py", ] ) if choice == 2: sys.exit(3) else: print("Please enter the default value now, as valid Python") print("The datetime module is available, so you can do e.g. datetime.date.today()") while True: code = input(">>> ") if not code: print("Please enter some code, or 'exit' (with no quotes) to exit.") elif code == "exit": sys.exit(1) else: try: return eval(code, {}, {"datetime": datetime_safe}) except (SyntaxError, NameError) as e: print("Invalid input: %s" % e) else: break def ask_rename(self, model_name, old_name, new_name, field_instance): "Was this field really renamed?" return self._boolean_input("Did you rename %s.%s to %s.%s (a %s)? [y/N]" % (model_name, old_name, model_name, new_name, field_instance.__class__.__name__), False)