==================================== Writing custom django-admin commands ==================================== .. module:: django.core.management Applications can register their own actions with ``manage.py``. For example, you might want to add a ``manage.py`` action for a Django app that you're distributing. In this document, we will be building a custom ``closepoll`` command for the ``polls`` application from the :doc:`tutorial`. To do this, just add a ``management/commands`` directory to the application. Django will register a ``manage.py`` command for each Python module in that directory whose name doesn't begin with an underscore. For example:: polls/ __init__.py models.py management/ __init__.py commands/ __init__.py _private.py closepoll.py tests.py views.py On Python 2, be sure to include ``__init__.py`` files in both the ``management`` and ``management/commands`` directories as done above or your command will not be detected. In this example, the ``closepoll`` command will be made available to any project that includes the ``polls`` application in :setting:`INSTALLED_APPS`. The ``_private.py`` module will not be available as a management command. The ``closepoll.py`` module has only one requirement -- it must define a class ``Command`` that extends :class:`BaseCommand` or one of its :ref:`subclasses`. .. admonition:: Standalone scripts Custom management commands are especially useful for running standalone scripts or for scripts that are periodically executed from the UNIX crontab or from Windows scheduled tasks control panel. To implement the command, edit ``polls/management/commands/closepoll.py`` to look like this: .. code-block:: python from django.core.management.base import BaseCommand, CommandError from polls.models import Poll class Command(BaseCommand): args = '' help = 'Closes the specified poll for voting' def handle(self, *args, **options): for poll_id in args: try: poll = Poll.objects.get(pk=int(poll_id)) except Poll.DoesNotExist: raise CommandError('Poll "%s" does not exist' % poll_id) poll.opened = False poll.save() self.stdout.write('Successfully closed poll "%s"' % poll_id) .. _management-commands-output: .. note:: When you are using management commands and wish to provide console output, you should write to ``self.stdout`` and ``self.stderr``, instead of printing to ``stdout`` and ``stderr`` directly. By using these proxies, it becomes much easier to test your custom command. Note also that you don't need to end messages with a newline character, it will be added automatically, unless you specify the ``ending`` parameter:: self.stdout.write("Unterminated line", ending='') The new custom command can be called using ``python manage.py closepoll ``. The ``handle()`` method takes zero or more ``poll_ids`` and sets ``poll.opened`` to ``False`` for each one. If the user referenced any nonexistent polls, a :class:`CommandError` is raised. The ``poll.opened`` attribute does not exist in the :doc:`tutorial` and was added to ``polls.models.Poll`` for this example. The same ``closepoll`` could be easily modified to delete a given poll instead of closing it by accepting additional command line options. These custom options must be added to :attr:`~BaseCommand.option_list` like this: .. code-block:: python from optparse import make_option class Command(BaseCommand): option_list = BaseCommand.option_list + ( make_option('--delete', action='store_true', dest='delete', default=False, help='Delete poll instead of closing it'), ) def handle(self, *args, **options): # ... if options['delete']: poll.delete() # ... The option (``delete`` in our example) is available in the options dict parameter of the handle method. See the :py:mod:`optparse` Python documentation for more about ``make_option`` usage. In addition to being able to add custom command line options, all :doc:`management commands` can accept some default options such as :djadminopt:`--verbosity` and :djadminopt:`--traceback`. .. _management-commands-and-locales: Management commands and locales =============================== By default, the :meth:`BaseCommand.execute` method sets the hardcoded 'en-us' locale because some commands shipped with Django perform several tasks (for example, user-facing content rendering and database population) that require a system-neutral string language (for which we use 'en-us'). If, for some reason, your custom management command needs to use a fixed locale different from 'en-us', you should manually activate and deactivate it in your :meth:`~BaseCommand.handle` or :meth:`~NoArgsCommand.handle_noargs` method using the functions provided by the I18N support code: .. code-block:: python from django.core.management.base import BaseCommand, CommandError from django.utils import translation class Command(BaseCommand): ... can_import_settings = True def handle(self, *args, **options): # Activate a fixed locale, e.g. Russian translation.activate('ru') # Or you can activate the LANGUAGE_CODE # chosen in the settings: # #from django.conf import settings #translation.activate(settings.LANGUAGE_CODE) # Your command logic here # ... translation.deactivate() Another need might be that your command simply should use the locale set in settings and Django should be kept from forcing it to 'en-us'. You can achieve it by using the :data:`BaseCommand.leave_locale_alone` option. When working on the scenarios described above though, take into account that system management commands typically have to be very careful about running in non-uniform locales, so you might need to: * Make sure the :setting:`USE_I18N` setting is always ``True`` when running the command (this is a good example of the potential problems stemming from a dynamic runtime environment that Django commands avoid offhand by always using a fixed locale). * Review the code of your command and the code it calls for behavioral differences when locales are changed and evaluate its impact on predictable behavior of your command. Command objects =============== .. class:: BaseCommand The base class from which all management commands ultimately derive. Use this class if you want access to all of the mechanisms which parse the command-line arguments and work out what code to call in response; if you don't need to change any of that behavior, consider using one of its :ref:`subclasses`. Subclassing the :class:`BaseCommand` class requires that you implement the :meth:`~BaseCommand.handle` method. Attributes ---------- All attributes can be set in your derived class and can be used in :class:`BaseCommand`’s :ref:`subclasses`. .. attribute:: BaseCommand.args A string listing the arguments accepted by the command, suitable for use in help messages; e.g., a command which takes a list of application names might set this to ''. .. attribute:: BaseCommand.can_import_settings A boolean indicating whether the command needs to be able to import Django settings; if ``True``, ``execute()`` will verify that this is possible before proceeding. Default value is ``True``. .. attribute:: BaseCommand.help A short description of the command, which will be printed in the help message when the user runs the command ``python manage.py help ``. .. attribute:: BaseCommand.option_list This is the list of ``optparse`` options which will be fed into the command's ``OptionParser`` for parsing arguments. .. attribute:: BaseCommand.output_transaction A boolean indicating whether the command outputs SQL statements; if ``True``, the output will automatically be wrapped with ``BEGIN;`` and ``COMMIT;``. Default value is ``False``. .. attribute:: BaseCommand.requires_system_checks .. versionadded:: 1.7 A boolean; if ``True``, the entire Django project will be checked for potential problems prior to executing the command. If ``requires_system_checks`` is missing, the value of ``requires_model_validation`` is used. If the latter flag is missing as well, the default value (``True``) is used. Defining both ``requires_system_checks`` and ``requires_model_validation`` will result in an error. .. attribute:: BaseCommand.requires_model_validation .. deprecated:: 1.7 Replaced by ``requires_system_checks`` A boolean; if ``True``, validation of installed models will be performed prior to executing the command. Default value is ``True``. To validate an individual application's models rather than all applications' models, call :meth:`~BaseCommand.validate` from :meth:`~BaseCommand.handle`. .. attribute:: BaseCommand.leave_locale_alone A boolean indicating whether the locale set in settings should be preserved during the execution of the command instead of being forcibly set to 'en-us'. Default value is ``False``. Make sure you know what you are doing if you decide to change the value of this option in your custom command if it creates database content that is locale-sensitive and such content shouldn't contain any translations (like it happens e.g. with django.contrib.auth permissions) as making the locale differ from the de facto default 'en-us' might cause unintended effects. See the `Management commands and locales`_ section above for further details. This option can't be ``False`` when the :data:`~BaseCommand.can_import_settings` option is set to ``False`` too because attempting to set the locale needs access to settings. This condition will generate a :class:`CommandError`. .. versionadded:: 1.6 The ``leave_locale_alone`` option was added in Django 1.6. Methods ------- :class:`BaseCommand` has a few methods that can be overridden but only the :meth:`~BaseCommand.handle` method must be implemented. .. admonition:: Implementing a constructor in a subclass If you implement ``__init__`` in your subclass of :class:`BaseCommand`, you must call :class:`BaseCommand`’s ``__init__``. .. code-block:: python class Command(BaseCommand): def __init__(self, *args, **kwargs): super(Command, self).__init__(*args, **kwargs) # ... .. method:: BaseCommand.get_version() Return the Django version, which should be correct for all built-in Django commands. User-supplied commands can override this method to return their own version. .. method:: BaseCommand.execute(*args, **options) Try to execute this command, performing model validation if needed (as controlled by the attribute :attr:`requires_model_validation`). If the command raises a :class:`CommandError`, intercept it and print it sensibly to stderr. .. admonition:: Calling a management command in your code ``execute()`` should not be called directly from your code to execute a command. Use :ref:`call_command ` instead. .. method:: BaseCommand.handle(*args, **options) The actual logic of the command. Subclasses must implement this method. .. method:: BaseCommand.check(app_configs=None, tags=None, display_num_errors=False) .. versionadded:: 1.7 Uses the system check framework to inspect the entire Django project for potential problems. Serious problems are raised as a :class:`CommandError`; warnings are output to stderr; minor notifications are output to stdout. If ``app_configs`` and ``tags`` are both ``None``, all system checks are performed. ``tags`` can be a list of check tags, like ``compatibility`` or ``models``. .. method:: BaseCommand.validate(app=None, display_num_errors=False) .. deprecated:: 1.7 Replaced with the :djadmin:`check` command If ``app`` is None, then all installed apps are checked for errors. .. _ref-basecommand-subclasses: BaseCommand subclasses ---------------------- .. class:: AppCommand A management command which takes one or more installed application labels as arguments, and does something with each of them. Rather than implementing :meth:`~BaseCommand.handle`, subclasses must implement :meth:`~AppCommand.handle_app_config`, which will be called once for each application. .. method:: AppCommand.handle_app_config(app_config, **options) Perform the command's actions for ``app_config``, which will be an :class:`~django.apps.AppConfig` instance corresponding to an application label given on the command line. .. versionchanged:: 1.7 Previously, :class:`AppCommand` subclasses had to implement ``handle_app(app, **options)`` where ``app`` was a models module. The new API makes it possible to handle applications without a models module. The fastest way to migrate is as follows:: def handle_app_config(app_config, **options): if app_config.models_module is None: return # Or raise an exception. app = app_config.models_module # Copy the implementation of handle_app(app_config, **options) here. However, you may be able to simplify the implementation by using directly the attributes of ``app_config``. .. class:: LabelCommand A management command which takes one or more arbitrary arguments (labels) on the command line, and does something with each of them. Rather than implementing :meth:`~BaseCommand.handle`, subclasses must implement :meth:`~LabelCommand.handle_label`, which will be called once for each label. .. method:: LabelCommand.handle_label(label, **options) Perform the command's actions for ``label``, which will be the string as given on the command line. .. class:: NoArgsCommand A command which takes no arguments on the command line. Rather than implementing :meth:`~BaseCommand.handle`, subclasses must implement :meth:`~NoArgsCommand.handle_noargs`; :meth:`~BaseCommand.handle` itself is overridden to ensure no arguments are passed to the command. .. method:: NoArgsCommand.handle_noargs(**options) Perform this command's actions .. _ref-command-exceptions: Command exceptions ------------------ .. class:: CommandError Exception class indicating a problem while executing a management command. If this exception is raised during the execution of a management command from a command line console, it will be caught and turned into a nicely-printed error message to the appropriate output stream (i.e., stderr); as a result, raising this exception (with a sensible description of the error) is the preferred way to indicate that something has gone wrong in the execution of a command. If a management command is called from code through :ref:`call_command `, it's up to you to catch the exception when needed.