import json import os import sys import uuid from ctypes import ( addressof, byref, c_buffer, c_char_p, c_double, c_int, c_void_p, string_at, ) from django.contrib.gis.gdal.driver import Driver from django.contrib.gis.gdal.error import GDALException from django.contrib.gis.gdal.prototypes import raster as capi from django.contrib.gis.gdal.raster.band import BandList from django.contrib.gis.gdal.raster.base import GDALRasterBase from django.contrib.gis.gdal.raster.const import ( GDAL_RESAMPLE_ALGORITHMS, VSI_DELETE_BUFFER_ON_READ, VSI_FILESYSTEM_BASE_PATH, VSI_TAKE_BUFFER_OWNERSHIP, ) from django.contrib.gis.gdal.srs import SpatialReference, SRSException from django.contrib.gis.geometry import json_regex from django.utils.encoding import force_bytes, force_str from django.utils.functional import cached_property class TransformPoint(list): indices = { 'origin': (0, 3), 'scale': (1, 5), 'skew': (2, 4), } def __init__(self, raster, prop): x = raster.geotransform[self.indices[prop][0]] y = raster.geotransform[self.indices[prop][1]] super().__init__([x, y]) self._raster = raster self._prop = prop @property def x(self): return self[0] @x.setter def x(self, value): gtf = self._raster.geotransform gtf[self.indices[self._prop][0]] = value self._raster.geotransform = gtf @property def y(self): return self[1] @y.setter def y(self, value): gtf = self._raster.geotransform gtf[self.indices[self._prop][1]] = value self._raster.geotransform = gtf class GDALRaster(GDALRasterBase): """ Wrap a raster GDAL Data Source object. """ destructor = capi.close_ds def __init__(self, ds_input, write=False): self._write = 1 if write else 0 Driver.ensure_registered() # Preprocess json inputs. This converts json strings to dictionaries, # which are parsed below the same way as direct dictionary inputs. if isinstance(ds_input, str) and json_regex.match(ds_input): ds_input = json.loads(ds_input) # If input is a valid file path, try setting file as source. if isinstance(ds_input, str): if ( not ds_input.startswith(VSI_FILESYSTEM_BASE_PATH) and not os.path.exists(ds_input) ): raise GDALException( 'Unable to read raster source input "%s".' % ds_input ) try: # GDALOpen will auto-detect the data source type. self._ptr = capi.open_ds(force_bytes(ds_input), self._write) except GDALException as err: raise GDALException('Could not open the datasource at "{}" ({}).'.format(ds_input, err)) elif isinstance(ds_input, bytes): # Create a new raster in write mode. self._write = 1 # Get size of buffer. size = sys.getsizeof(ds_input) # Pass data to ctypes, keeping a reference to the ctypes object so # that the vsimem file remains available until the GDALRaster is # deleted. self._ds_input = c_buffer(ds_input) # Create random name to reference in vsimem filesystem. vsi_path = os.path.join(VSI_FILESYSTEM_BASE_PATH, str(uuid.uuid4())) # Create vsimem file from buffer. capi.create_vsi_file_from_mem_buffer( force_bytes(vsi_path), byref(self._ds_input), size, VSI_TAKE_BUFFER_OWNERSHIP, ) # Open the new vsimem file as a GDALRaster. try: self._ptr = capi.open_ds(force_bytes(vsi_path), self._write) except GDALException: # Remove the broken file from the VSI filesystem. capi.unlink_vsi_file(force_bytes(vsi_path)) raise GDALException('Failed creating VSI raster from the input buffer.') elif isinstance(ds_input, dict): # A new raster needs to be created in write mode self._write = 1 # Create driver (in memory by default) driver = Driver(ds_input.get('driver', 'MEM')) # For out of memory drivers, check filename argument if driver.name != 'MEM' and 'name' not in ds_input: raise GDALException('Specify name for creation of raster with driver "{}".'.format(driver.name)) # Check if width and height where specified if 'width' not in ds_input or 'height' not in ds_input: raise GDALException('Specify width and height attributes for JSON or dict input.') # Check if srid was specified if 'srid' not in ds_input: raise GDALException('Specify srid for JSON or dict input.') # Create null terminated gdal options array. papsz_options = [] for key, val in ds_input.get('papsz_options', {}).items(): option = '{}={}'.format(key, val) papsz_options.append(option.upper().encode()) papsz_options.append(None) # Convert papszlist to ctypes array. papsz_options = (c_char_p * len(papsz_options))(*papsz_options) # Create GDAL Raster self._ptr = capi.create_ds( driver._ptr, force_bytes(ds_input.get('name', '')), ds_input['width'], ds_input['height'], ds_input.get('nr_of_bands', len(ds_input.get('bands', []))), ds_input.get('datatype', 6), byref(papsz_options), ) # Set band data if provided for i, band_input in enumerate(ds_input.get('bands', [])): band = self.bands[i] if 'nodata_value' in band_input: band.nodata_value = band_input['nodata_value'] # Instantiate band filled with nodata values if only # partial input data has been provided. if band.nodata_value is not None and ( 'data' not in band_input or 'size' in band_input or 'shape' in band_input): band.data(data=(band.nodata_value,), shape=(1, 1)) # Set band data values from input. band.data( data=band_input.get('data'), size=band_input.get('size'), shape=band_input.get('shape'), offset=band_input.get('offset'), ) # Set SRID self.srs = ds_input.get('srid') # Set additional properties if provided if 'origin' in ds_input: self.origin.x, self.origin.y = ds_input['origin'] if 'scale' in ds_input: self.scale.x, self.scale.y = ds_input['scale'] if 'skew' in ds_input: self.skew.x, self.skew.y = ds_input['skew'] elif isinstance(ds_input, c_void_p): # Instantiate the object using an existing pointer to a gdal raster. self._ptr = ds_input else: raise GDALException('Invalid data source input type: "{}".'.format(type(ds_input))) def __del__(self): if self.is_vsi_based: # Remove the temporary file from the VSI in-memory filesystem. capi.unlink_vsi_file(force_bytes(self.name)) super().__del__() def __str__(self): return self.name def __repr__(self): """ Short-hand representation because WKB may be very large. """ return '' % hex(addressof(self._ptr)) def _flush(self): """ Flush all data from memory into the source file if it exists. The data that needs flushing are geotransforms, coordinate systems, nodata_values and pixel values. This function will be called automatically wherever it is needed. """ # Raise an Exception if the value is being changed in read mode. if not self._write: raise GDALException('Raster needs to be opened in write mode to change values.') capi.flush_ds(self._ptr) @property def vsi_buffer(self): if not self.is_vsi_based: return None # Prepare an integer that will contain the buffer length. out_length = c_int() # Get the data using the vsi file name. dat = capi.get_mem_buffer_from_vsi_file( force_bytes(self.name), byref(out_length), VSI_DELETE_BUFFER_ON_READ, ) # Read the full buffer pointer. return string_at(dat, out_length.value) @cached_property def is_vsi_based(self): return self._ptr and self.name.startswith(VSI_FILESYSTEM_BASE_PATH) @property def name(self): """ Return the name of this raster. Corresponds to filename for file-based rasters. """ return force_str(capi.get_ds_description(self._ptr)) @cached_property def driver(self): """ Return the GDAL Driver used for this raster. """ ds_driver = capi.get_ds_driver(self._ptr) return Driver(ds_driver) @property def width(self): """ Width (X axis) in pixels. """ return capi.get_ds_xsize(self._ptr) @property def height(self): """ Height (Y axis) in pixels. """ return capi.get_ds_ysize(self._ptr) @property def srs(self): """ Return the SpatialReference used in this GDALRaster. """ try: wkt = capi.get_ds_projection_ref(self._ptr) if not wkt: return None return SpatialReference(wkt, srs_type='wkt') except SRSException: return None @srs.setter def srs(self, value): """ Set the spatial reference used in this GDALRaster. The input can be a SpatialReference or any parameter accepted by the SpatialReference constructor. """ if isinstance(value, SpatialReference): srs = value elif isinstance(value, (int, str)): srs = SpatialReference(value) else: raise ValueError('Could not create a SpatialReference from input.') capi.set_ds_projection_ref(self._ptr, srs.wkt.encode()) self._flush() @property def srid(self): """ Shortcut to access the srid of this GDALRaster. """ return self.srs.srid @srid.setter def srid(self, value): """ Shortcut to set this GDALRaster's srs from an srid. """ self.srs = value @property def geotransform(self): """ Return the geotransform of the data source. Return the default geotransform if it does not exist or has not been set previously. The default is [0.0, 1.0, 0.0, 0.0, 0.0, -1.0]. """ # Create empty ctypes double array for data gtf = (c_double * 6)() capi.get_ds_geotransform(self._ptr, byref(gtf)) return list(gtf) @geotransform.setter def geotransform(self, values): "Set the geotransform for the data source." if len(values) != 6 or not all(isinstance(x, (int, float)) for x in values): raise ValueError('Geotransform must consist of 6 numeric values.') # Create ctypes double array with input and write data values = (c_double * 6)(*values) capi.set_ds_geotransform(self._ptr, byref(values)) self._flush() @property def origin(self): """ Coordinates of the raster origin. """ return TransformPoint(self, 'origin') @property def scale(self): """ Pixel scale in units of the raster projection. """ return TransformPoint(self, 'scale') @property def skew(self): """ Skew of pixels (rotation parameters). """ return TransformPoint(self, 'skew') @property def extent(self): """ Return the extent as a 4-tuple (xmin, ymin, xmax, ymax). """ # Calculate boundary values based on scale and size xval = self.origin.x + self.scale.x * self.width yval = self.origin.y + self.scale.y * self.height # Calculate min and max values xmin = min(xval, self.origin.x) xmax = max(xval, self.origin.x) ymin = min(yval, self.origin.y) ymax = max(yval, self.origin.y) return xmin, ymin, xmax, ymax @property def bands(self): return BandList(self) def warp(self, ds_input, resampling='NearestNeighbour', max_error=0.0): """ Return a warped GDALRaster with the given input characteristics. The input is expected to be a dictionary containing the parameters of the target raster. Allowed values are width, height, SRID, origin, scale, skew, datatype, driver, and name (filename). By default, the warp functions keeps all parameters equal to the values of the original source raster. For the name of the target raster, the name of the source raster will be used and appended with _copy. + source_driver_name. In addition, the resampling algorithm can be specified with the "resampling" input parameter. The default is NearestNeighbor. For a list of all options consult the GDAL_RESAMPLE_ALGORITHMS constant. """ # Get the parameters defining the geotransform, srid, and size of the raster ds_input.setdefault('width', self.width) ds_input.setdefault('height', self.height) ds_input.setdefault('srid', self.srs.srid) ds_input.setdefault('origin', self.origin) ds_input.setdefault('scale', self.scale) ds_input.setdefault('skew', self.skew) # Get the driver, name, and datatype of the target raster ds_input.setdefault('driver', self.driver.name) if 'name' not in ds_input: ds_input['name'] = self.name + '_copy.' + self.driver.name if 'datatype' not in ds_input: ds_input['datatype'] = self.bands[0].datatype() # Instantiate raster bands filled with nodata values. ds_input['bands'] = [{'nodata_value': bnd.nodata_value} for bnd in self.bands] # Create target raster target = GDALRaster(ds_input, write=True) # Select resampling algorithm algorithm = GDAL_RESAMPLE_ALGORITHMS[resampling] # Reproject image capi.reproject_image( self._ptr, self.srs.wkt.encode(), target._ptr, target.srs.wkt.encode(), algorithm, 0.0, max_error, c_void_p(), c_void_p(), c_void_p() ) # Make sure all data is written to file target._flush() return target def clone(self, name=None): """Return a clone of this GDALRaster.""" if name: clone_name = name elif self.driver.name != 'MEM': clone_name = self.name + '_copy.' + self.driver.name else: clone_name = os.path.join(VSI_FILESYSTEM_BASE_PATH, str(uuid.uuid4())) return GDALRaster( capi.copy_ds( self.driver._ptr, force_bytes(clone_name), self._ptr, c_int(), c_char_p(), c_void_p(), c_void_p(), ), write=self._write, ) def transform(self, srs, driver=None, name=None, resampling='NearestNeighbour', max_error=0.0): """ Return a copy of this raster reprojected into the given spatial reference system. """ # Convert the resampling algorithm name into an algorithm id algorithm = GDAL_RESAMPLE_ALGORITHMS[resampling] if isinstance(srs, SpatialReference): target_srs = srs elif isinstance(srs, (int, str)): target_srs = SpatialReference(srs) else: raise TypeError( 'Transform only accepts SpatialReference, string, and integer ' 'objects.' ) if target_srs.srid == self.srid and (not driver or driver == self.driver.name): return self.clone(name) # Create warped virtual dataset in the target reference system target = capi.auto_create_warped_vrt( self._ptr, self.srs.wkt.encode(), target_srs.wkt.encode(), algorithm, max_error, c_void_p() ) target = GDALRaster(target) # Construct the target warp dictionary from the virtual raster data = { 'srid': target_srs.srid, 'width': target.width, 'height': target.height, 'origin': [target.origin.x, target.origin.y], 'scale': [target.scale.x, target.scale.y], 'skew': [target.skew.x, target.skew.y], } # Set the driver and filepath if provided if driver: data['driver'] = driver if name: data['name'] = name # Warp the raster into new srid return self.warp(data, resampling=resampling, max_error=max_error) @property def info(self): """ Return information about this raster in a string format equivalent to the output of the gdalinfo command line utility. """ if not capi.get_ds_info: raise ValueError('GDAL ≥ 2.1 is required for using the info property.') return capi.get_ds_info(self.ptr, None).decode()