import ctypes, random, unittest, sys from django.contrib.gis.geos import * from django.contrib.gis.geos.base import gdal, numpy, GEOSBase from django.contrib.gis.tests.geometries import * class GEOSTest(unittest.TestCase): @property def null_srid(self): """ Returns the proper null SRID depending on the GEOS version. See the comments in `test15_srid` for more details. """ info = geos_version_info() if info['version'] == '3.0.0' and info['release_candidate']: return -1 else: return None def test00_base(self): "Tests out the GEOSBase class." # Testing out GEOSBase class, which provides a `ptr` property # that abstracts out access to underlying C pointers. class FakeGeom1(GEOSBase): pass # This one only accepts pointers to floats c_float_p = ctypes.POINTER(ctypes.c_float) class FakeGeom2(GEOSBase): ptr_type = c_float_p # Default ptr_type is `c_void_p`. fg1 = FakeGeom1() # Default ptr_type is C float pointer fg2 = FakeGeom2() # These assignments are OK -- None is allowed because # it's equivalent to the NULL pointer. fg1.ptr = ctypes.c_void_p() fg1.ptr = None fg2.ptr = c_float_p(ctypes.c_float(5.23)) fg2.ptr = None # Because pointers have been set to NULL, an exception should be # raised when we try to access it. Raising an exception is # preferrable to a segmentation fault that commonly occurs when # a C method is given a NULL memory reference. for fg in (fg1, fg2): # Equivalent to `fg.ptr` self.assertRaises(GEOSException, fg._get_ptr) # Anything that is either not None or the acceptable pointer type will # result in a TypeError when trying to assign it to the `ptr` property. # Thus, memmory addresses (integers) and pointers of the incorrect type # (in `bad_ptrs`) will not be allowed. bad_ptrs = (5, ctypes.c_char_p('foobar')) for bad_ptr in bad_ptrs: # Equivalent to `fg.ptr = bad_ptr` self.assertRaises(TypeError, fg1._set_ptr, bad_ptr) self.assertRaises(TypeError, fg2._set_ptr, bad_ptr) def test01a_wkt(self): "Testing WKT output." for g in wkt_out: geom = fromstr(g.wkt) self.assertEqual(g.ewkt, geom.wkt) def test01b_hex(self): "Testing HEX output." for g in hex_wkt: geom = fromstr(g.wkt) self.assertEqual(g.hex, geom.hex) def test01b_hexewkb(self): "Testing (HEX)EWKB output." from binascii import a2b_hex pnt_2d = Point(0, 1, srid=4326) pnt_3d = Point(0, 1, 2, srid=4326) # OGC-compliant HEX will not have SRID nor Z value. self.assertEqual(ogc_hex, pnt_2d.hex) self.assertEqual(ogc_hex, pnt_3d.hex) # HEXEWKB should be appropriate for its dimension -- have to use an # a WKBWriter w/dimension set accordingly, else GEOS will insert # garbage into 3D coordinate if there is none. self.assertEqual(hexewkb_2d, pnt_2d.hexewkb) self.assertEqual(hexewkb_3d, pnt_3d.hexewkb) # Same for EWKB. self.assertEqual(buffer(a2b_hex(hexewkb_2d)), pnt_2d.ewkb) self.assertEqual(buffer(a2b_hex(hexewkb_3d)), pnt_3d.ewkb) # Redundant sanity check. self.assertEqual(True, GEOSGeometry(hexewkb_3d).hasz) self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid) def test01c_kml(self): "Testing KML output." for tg in wkt_out: geom = fromstr(tg.wkt) kml = getattr(tg, 'kml', False) if kml: self.assertEqual(kml, geom.kml) def test01d_errors(self): "Testing the Error handlers." # string-based print "\nBEGIN - expecting GEOS_ERROR; safe to ignore.\n" for err in errors: try: g = fromstr(err.wkt) except (GEOSException, ValueError): pass # Bad WKB self.assertRaises(GEOSException, GEOSGeometry, buffer('0')) print "\nEND - expecting GEOS_ERROR; safe to ignore.\n" class NotAGeometry(object): pass # Some other object self.assertRaises(TypeError, GEOSGeometry, NotAGeometry()) # None self.assertRaises(TypeError, GEOSGeometry, None) def test01e_wkb(self): "Testing WKB output." from binascii import b2a_hex for g in hex_wkt: geom = fromstr(g.wkt) wkb = geom.wkb self.assertEqual(b2a_hex(wkb).upper(), g.hex) def test01f_create_hex(self): "Testing creation from HEX." for g in hex_wkt: geom_h = GEOSGeometry(g.hex) # we need to do this so decimal places get normalised geom_t = fromstr(g.wkt) self.assertEqual(geom_t.wkt, geom_h.wkt) def test01g_create_wkb(self): "Testing creation from WKB." from binascii import a2b_hex for g in hex_wkt: wkb = buffer(a2b_hex(g.hex)) geom_h = GEOSGeometry(wkb) # we need to do this so decimal places get normalised geom_t = fromstr(g.wkt) self.assertEqual(geom_t.wkt, geom_h.wkt) def test01h_ewkt(self): "Testing EWKT." srid = 32140 for p in polygons: ewkt = 'SRID=%d;%s' % (srid, p.wkt) poly = fromstr(ewkt) self.assertEqual(srid, poly.srid) self.assertEqual(srid, poly.shell.srid) self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export def test01i_json(self): "Testing GeoJSON input/output (via GDAL)." if not gdal or not gdal.GEOJSON: return for g in json_geoms: geom = GEOSGeometry(g.wkt) if not hasattr(g, 'not_equal'): self.assertEqual(g.json, geom.json) self.assertEqual(g.json, geom.geojson) self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json)) def test01k_fromfile(self): "Testing the fromfile() factory." from StringIO import StringIO ref_pnt = GEOSGeometry('POINT(5 23)') wkt_f = StringIO() wkt_f.write(ref_pnt.wkt) wkb_f = StringIO() wkb_f.write(str(ref_pnt.wkb)) # Other tests use `fromfile()` on string filenames so those # aren't tested here. for fh in (wkt_f, wkb_f): fh.seek(0) pnt = fromfile(fh) self.assertEqual(ref_pnt, pnt) def test01k_eq(self): "Testing equivalence." p = fromstr('POINT(5 23)') self.assertEqual(p, p.wkt) self.assertNotEqual(p, 'foo') ls = fromstr('LINESTRING(0 0, 1 1, 5 5)') self.assertEqual(ls, ls.wkt) self.assertNotEqual(p, 'bar') # Error shouldn't be raise on equivalence testing with # an invalid type. for g in (p, ls): self.assertNotEqual(g, None) self.assertNotEqual(g, {'foo' : 'bar'}) self.assertNotEqual(g, False) def test02a_points(self): "Testing Point objects." prev = fromstr('POINT(0 0)') for p in points: # Creating the point from the WKT pnt = fromstr(p.wkt) self.assertEqual(pnt.geom_type, 'Point') self.assertEqual(pnt.geom_typeid, 0) self.assertEqual(p.x, pnt.x) self.assertEqual(p.y, pnt.y) self.assertEqual(True, pnt == fromstr(p.wkt)) self.assertEqual(False, pnt == prev) # Making sure that the point's X, Y components are what we expect self.assertAlmostEqual(p.x, pnt.tuple[0], 9) self.assertAlmostEqual(p.y, pnt.tuple[1], 9) # Testing the third dimension, and getting the tuple arguments if hasattr(p, 'z'): self.assertEqual(True, pnt.hasz) self.assertEqual(p.z, pnt.z) self.assertEqual(p.z, pnt.tuple[2], 9) tup_args = (p.x, p.y, p.z) set_tup1 = (2.71, 3.14, 5.23) set_tup2 = (5.23, 2.71, 3.14) else: self.assertEqual(False, pnt.hasz) self.assertEqual(None, pnt.z) tup_args = (p.x, p.y) set_tup1 = (2.71, 3.14) set_tup2 = (3.14, 2.71) # Centroid operation on point should be point itself self.assertEqual(p.centroid, pnt.centroid.tuple) # Now testing the different constructors pnt2 = Point(tup_args) # e.g., Point((1, 2)) pnt3 = Point(*tup_args) # e.g., Point(1, 2) self.assertEqual(True, pnt == pnt2) self.assertEqual(True, pnt == pnt3) # Now testing setting the x and y pnt.y = 3.14 pnt.x = 2.71 self.assertEqual(3.14, pnt.y) self.assertEqual(2.71, pnt.x) # Setting via the tuple/coords property pnt.tuple = set_tup1 self.assertEqual(set_tup1, pnt.tuple) pnt.coords = set_tup2 self.assertEqual(set_tup2, pnt.coords) prev = pnt # setting the previous geometry def test02b_multipoints(self): "Testing MultiPoint objects." for mp in multipoints: mpnt = fromstr(mp.wkt) self.assertEqual(mpnt.geom_type, 'MultiPoint') self.assertEqual(mpnt.geom_typeid, 4) self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9) self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9) self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt)) self.assertEqual(mp.centroid, mpnt.centroid.tuple) self.assertEqual(mp.points, tuple(m.tuple for m in mpnt)) for p in mpnt: self.assertEqual(p.geom_type, 'Point') self.assertEqual(p.geom_typeid, 0) self.assertEqual(p.empty, False) self.assertEqual(p.valid, True) def test03a_linestring(self): "Testing LineString objects." prev = fromstr('POINT(0 0)') for l in linestrings: ls = fromstr(l.wkt) self.assertEqual(ls.geom_type, 'LineString') self.assertEqual(ls.geom_typeid, 1) self.assertEqual(ls.empty, False) self.assertEqual(ls.ring, False) if hasattr(l, 'centroid'): self.assertEqual(l.centroid, ls.centroid.tuple) if hasattr(l, 'tup'): self.assertEqual(l.tup, ls.tuple) self.assertEqual(True, ls == fromstr(l.wkt)) self.assertEqual(False, ls == prev) self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls)) prev = ls # Creating a LineString from a tuple, list, and numpy array self.assertEqual(ls, LineString(ls.tuple)) # tuple self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) # Point individual arguments if numpy: self.assertEqual(ls, LineString(numpy.array(ls.tuple))) # as numpy array def test03b_multilinestring(self): "Testing MultiLineString objects." prev = fromstr('POINT(0 0)') for l in multilinestrings: ml = fromstr(l.wkt) self.assertEqual(ml.geom_type, 'MultiLineString') self.assertEqual(ml.geom_typeid, 5) self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9) self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9) self.assertEqual(True, ml == fromstr(l.wkt)) self.assertEqual(False, ml == prev) prev = ml for ls in ml: self.assertEqual(ls.geom_type, 'LineString') self.assertEqual(ls.geom_typeid, 1) self.assertEqual(ls.empty, False) self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml)) self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt) self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml))) def test04_linearring(self): "Testing LinearRing objects." for rr in linearrings: lr = fromstr(rr.wkt) self.assertEqual(lr.geom_type, 'LinearRing') self.assertEqual(lr.geom_typeid, 2) self.assertEqual(rr.n_p, len(lr)) self.assertEqual(True, lr.valid) self.assertEqual(False, lr.empty) # Creating a LinearRing from a tuple, list, and numpy array self.assertEqual(lr, LinearRing(lr.tuple)) self.assertEqual(lr, LinearRing(*lr.tuple)) self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple])) if numpy: self.assertEqual(lr, LinearRing(numpy.array(lr.tuple))) def test05a_polygons(self): "Testing Polygon objects." # Testing `from_bbox` class method bbox = (-180, -90, 180, 90) p = Polygon.from_bbox( bbox ) self.assertEqual(bbox, p.extent) prev = fromstr('POINT(0 0)') for p in polygons: # Creating the Polygon, testing its properties. poly = fromstr(p.wkt) self.assertEqual(poly.geom_type, 'Polygon') self.assertEqual(poly.geom_typeid, 3) self.assertEqual(poly.empty, False) self.assertEqual(poly.ring, False) self.assertEqual(p.n_i, poly.num_interior_rings) self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__ self.assertEqual(p.n_p, poly.num_points) # Area & Centroid self.assertAlmostEqual(p.area, poly.area, 9) self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9) self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9) # Testing the geometry equivalence self.assertEqual(True, poly == fromstr(p.wkt)) self.assertEqual(False, poly == prev) # Should not be equal to previous geometry self.assertEqual(True, poly != prev) # Testing the exterior ring ring = poly.exterior_ring self.assertEqual(ring.geom_type, 'LinearRing') self.assertEqual(ring.geom_typeid, 2) if p.ext_ring_cs: self.assertEqual(p.ext_ring_cs, ring.tuple) self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__ # Testing __getitem__ and __setitem__ on invalid indices self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly)) self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False) self.assertRaises(GEOSIndexError, poly.__getitem__, -1 * len(poly) - 1) # Testing __iter__ for r in poly: self.assertEqual(r.geom_type, 'LinearRing') self.assertEqual(r.geom_typeid, 2) # Testing polygon construction. self.assertRaises(TypeError, Polygon.__init__, 0, [1, 2, 3]) self.assertRaises(TypeError, Polygon.__init__, 'foo') # Polygon(shell, (hole1, ... holeN)) rings = tuple(r for r in poly) self.assertEqual(poly, Polygon(rings[0], rings[1:])) # Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN) ring_tuples = tuple(r.tuple for r in poly) self.assertEqual(poly, Polygon(*ring_tuples)) # Constructing with tuples of LinearRings. self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt) self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt) def test05b_multipolygons(self): "Testing MultiPolygon objects." print "\nBEGIN - expecting GEOS_NOTICE; safe to ignore.\n" prev = fromstr('POINT (0 0)') for mp in multipolygons: mpoly = fromstr(mp.wkt) self.assertEqual(mpoly.geom_type, 'MultiPolygon') self.assertEqual(mpoly.geom_typeid, 6) self.assertEqual(mp.valid, mpoly.valid) if mp.valid: self.assertEqual(mp.num_geom, mpoly.num_geom) self.assertEqual(mp.n_p, mpoly.num_coords) self.assertEqual(mp.num_geom, len(mpoly)) self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly)) for p in mpoly: self.assertEqual(p.geom_type, 'Polygon') self.assertEqual(p.geom_typeid, 3) self.assertEqual(p.valid, True) self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt) print "\nEND - expecting GEOS_NOTICE; safe to ignore.\n" def test06a_memory_hijinks(self): "Testing Geometry __del__() on rings and polygons." #### Memory issues with rings and polygons # These tests are needed to ensure sanity with writable geometries. # Getting a polygon with interior rings, and pulling out the interior rings poly = fromstr(polygons[1].wkt) ring1 = poly[0] ring2 = poly[1] # These deletes should be 'harmless' since they are done on child geometries del ring1 del ring2 ring1 = poly[0] ring2 = poly[1] # Deleting the polygon del poly # Access to these rings is OK since they are clones. s1, s2 = str(ring1), str(ring2) # The previous hijinks tests are now moot because only clones are # now used =) def test08_coord_seq(self): "Testing Coordinate Sequence objects." for p in polygons: if p.ext_ring_cs: # Constructing the polygon and getting the coordinate sequence poly = fromstr(p.wkt) cs = poly.exterior_ring.coord_seq self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too. self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works # Checks __getitem__ and __setitem__ for i in xrange(len(p.ext_ring_cs)): c1 = p.ext_ring_cs[i] # Expected value c2 = cs[i] # Value from coordseq self.assertEqual(c1, c2) # Constructing the test value to set the coordinate sequence with if len(c1) == 2: tset = (5, 23) else: tset = (5, 23, 8) cs[i] = tset # Making sure every set point matches what we expect for j in range(len(tset)): cs[i] = tset self.assertEqual(tset[j], cs[i][j]) def test09_relate_pattern(self): "Testing relate() and relate_pattern()." g = fromstr('POINT (0 0)') self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo') for i in xrange(len(relate_geoms)): g_tup = relate_geoms[i] a = fromstr(g_tup[0].wkt) b = fromstr(g_tup[1].wkt) pat = g_tup[2] result = g_tup[3] self.assertEqual(result, a.relate_pattern(b, pat)) self.assertEqual(pat, a.relate(b)) def test10_intersection(self): "Testing intersects() and intersection()." for i in xrange(len(topology_geoms)): g_tup = topology_geoms[i] a = fromstr(g_tup[0].wkt) b = fromstr(g_tup[1].wkt) i1 = fromstr(intersect_geoms[i].wkt) self.assertEqual(True, a.intersects(b)) i2 = a.intersection(b) self.assertEqual(i1, i2) self.assertEqual(i1, a & b) # __and__ is intersection operator a &= b # testing __iand__ self.assertEqual(i1, a) def test11_union(self): "Testing union()." for i in xrange(len(topology_geoms)): g_tup = topology_geoms[i] a = fromstr(g_tup[0].wkt) b = fromstr(g_tup[1].wkt) u1 = fromstr(union_geoms[i].wkt) u2 = a.union(b) self.assertEqual(u1, u2) self.assertEqual(u1, a | b) # __or__ is union operator a |= b # testing __ior__ self.assertEqual(u1, a) def test12_difference(self): "Testing difference()." for i in xrange(len(topology_geoms)): g_tup = topology_geoms[i] a = fromstr(g_tup[0].wkt) b = fromstr(g_tup[1].wkt) d1 = fromstr(diff_geoms[i].wkt) d2 = a.difference(b) self.assertEqual(d1, d2) self.assertEqual(d1, a - b) # __sub__ is difference operator a -= b # testing __isub__ self.assertEqual(d1, a) def test13_symdifference(self): "Testing sym_difference()." for i in xrange(len(topology_geoms)): g_tup = topology_geoms[i] a = fromstr(g_tup[0].wkt) b = fromstr(g_tup[1].wkt) d1 = fromstr(sdiff_geoms[i].wkt) d2 = a.sym_difference(b) self.assertEqual(d1, d2) self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator a ^= b # testing __ixor__ self.assertEqual(d1, a) def test14_buffer(self): "Testing buffer()." for i in xrange(len(buffer_geoms)): g_tup = buffer_geoms[i] g = fromstr(g_tup[0].wkt) # The buffer we expect exp_buf = fromstr(g_tup[1].wkt) # Can't use a floating-point for the number of quadsegs. self.assertRaises(ctypes.ArgumentError, g.buffer, g_tup[2], float(g_tup[3])) # Constructing our buffer buf = g.buffer(g_tup[2], g_tup[3]) self.assertEqual(exp_buf.num_coords, buf.num_coords) self.assertEqual(len(exp_buf), len(buf)) # Now assuring that each point in the buffer is almost equal for j in xrange(len(exp_buf)): exp_ring = exp_buf[j] buf_ring = buf[j] self.assertEqual(len(exp_ring), len(buf_ring)) for k in xrange(len(exp_ring)): # Asserting the X, Y of each point are almost equal (due to floating point imprecision) self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9) self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9) def test15_srid(self): "Testing the SRID property and keyword." # Testing SRID keyword on Point pnt = Point(5, 23, srid=4326) self.assertEqual(4326, pnt.srid) pnt.srid = 3084 self.assertEqual(3084, pnt.srid) self.assertRaises(ctypes.ArgumentError, pnt.set_srid, '4326') # Testing SRID keyword on fromstr(), and on Polygon rings. poly = fromstr(polygons[1].wkt, srid=4269) self.assertEqual(4269, poly.srid) for ring in poly: self.assertEqual(4269, ring.srid) poly.srid = 4326 self.assertEqual(4326, poly.shell.srid) # Testing SRID keyword on GeometryCollection gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021) self.assertEqual(32021, gc.srid) for i in range(len(gc)): self.assertEqual(32021, gc[i].srid) # GEOS may get the SRID from HEXEWKB # 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS # using `SELECT GeomFromText('POINT (5 23)', 4326);`. hex = '0101000020E610000000000000000014400000000000003740' p1 = fromstr(hex) self.assertEqual(4326, p1.srid) # In GEOS 3.0.0rc1-4 when the EWKB and/or HEXEWKB is exported, # the SRID information is lost and set to -1 -- this is not a # problem on the 3.0.0 version (another reason to upgrade). exp_srid = self.null_srid p2 = fromstr(p1.hex) self.assertEqual(exp_srid, p2.srid) p3 = fromstr(p1.hex, srid=-1) # -1 is intended. self.assertEqual(-1, p3.srid) def test16_mutable_geometries(self): "Testing the mutability of Polygons and Geometry Collections." ### Testing the mutability of Polygons ### for p in polygons: poly = fromstr(p.wkt) # Should only be able to use __setitem__ with LinearRing geometries. self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2))) # Constructing the new shell by adding 500 to every point in the old shell. shell_tup = poly.shell.tuple new_coords = [] for point in shell_tup: new_coords.append((point[0] + 500., point[1] + 500.)) new_shell = LinearRing(*tuple(new_coords)) # Assigning polygon's exterior ring w/the new shell poly.exterior_ring = new_shell s = str(new_shell) # new shell is still accessible self.assertEqual(poly.exterior_ring, new_shell) self.assertEqual(poly[0], new_shell) ### Testing the mutability of Geometry Collections for tg in multipoints: mp = fromstr(tg.wkt) for i in range(len(mp)): # Creating a random point. pnt = mp[i] new = Point(random.randint(1, 100), random.randint(1, 100)) # Testing the assignment mp[i] = new s = str(new) # what was used for the assignment is still accessible self.assertEqual(mp[i], new) self.assertEqual(mp[i].wkt, new.wkt) self.assertNotEqual(pnt, mp[i]) # MultiPolygons involve much more memory management because each # Polygon w/in the collection has its own rings. for tg in multipolygons: mpoly = fromstr(tg.wkt) for i in xrange(len(mpoly)): poly = mpoly[i] old_poly = mpoly[i] # Offsetting the each ring in the polygon by 500. for j in xrange(len(poly)): r = poly[j] for k in xrange(len(r)): r[k] = (r[k][0] + 500., r[k][1] + 500.) poly[j] = r self.assertNotEqual(mpoly[i], poly) # Testing the assignment mpoly[i] = poly s = str(poly) # Still accessible self.assertEqual(mpoly[i], poly) self.assertNotEqual(mpoly[i], old_poly) # Extreme (!!) __setitem__ -- no longer works, have to detect # in the first object that __setitem__ is called in the subsequent # objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)? #mpoly[0][0][0] = (3.14, 2.71) #self.assertEqual((3.14, 2.71), mpoly[0][0][0]) # Doing it more slowly.. #self.assertEqual((3.14, 2.71), mpoly[0].shell[0]) #del mpoly def test17_threed(self): "Testing three-dimensional geometries." # Testing a 3D Point pnt = Point(2, 3, 8) self.assertEqual((2.,3.,8.), pnt.coords) self.assertRaises(TypeError, pnt.set_coords, (1.,2.)) pnt.coords = (1.,2.,3.) self.assertEqual((1.,2.,3.), pnt.coords) # Testing a 3D LineString ls = LineString((2., 3., 8.), (50., 250., -117.)) self.assertEqual(((2.,3.,8.), (50.,250.,-117.)), ls.tuple) self.assertRaises(TypeError, ls.__setitem__, 0, (1.,2.)) ls[0] = (1.,2.,3.) self.assertEqual((1.,2.,3.), ls[0]) def test18_distance(self): "Testing the distance() function." # Distance to self should be 0. pnt = Point(0, 0) self.assertEqual(0.0, pnt.distance(Point(0, 0))) # Distance should be 1 self.assertEqual(1.0, pnt.distance(Point(0, 1))) # Distance should be ~ sqrt(2) self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11) # Distances are from the closest vertex in each geometry -- # should be 3 (distance from (2, 2) to (5, 2)). ls1 = LineString((0, 0), (1, 1), (2, 2)) ls2 = LineString((5, 2), (6, 1), (7, 0)) self.assertEqual(3, ls1.distance(ls2)) def test19_length(self): "Testing the length property." # Points have 0 length. pnt = Point(0, 0) self.assertEqual(0.0, pnt.length) # Should be ~ sqrt(2) ls = LineString((0, 0), (1, 1)) self.assertAlmostEqual(1.41421356237, ls.length, 11) # Should be circumfrence of Polygon poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))) self.assertEqual(4.0, poly.length) # Should be sum of each element's length in collection. mpoly = MultiPolygon(poly.clone(), poly) self.assertEqual(8.0, mpoly.length) def test20a_emptyCollections(self): "Testing empty geometries and collections." gc1 = GeometryCollection([]) gc2 = fromstr('GEOMETRYCOLLECTION EMPTY') pnt = fromstr('POINT EMPTY') ls = fromstr('LINESTRING EMPTY') poly = fromstr('POLYGON EMPTY') mls = fromstr('MULTILINESTRING EMPTY') mpoly1 = fromstr('MULTIPOLYGON EMPTY') mpoly2 = MultiPolygon(()) for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]: self.assertEqual(True, g.empty) # Testing len() and num_geom. if isinstance(g, Polygon): self.assertEqual(1, len(g)) # Has one empty linear ring self.assertEqual(1, g.num_geom) self.assertEqual(0, len(g[0])) elif isinstance(g, (Point, LineString)): self.assertEqual(1, g.num_geom) self.assertEqual(0, len(g)) else: self.assertEqual(0, g.num_geom) self.assertEqual(0, len(g)) # Testing __getitem__ (doesn't work on Point or Polygon) if isinstance(g, Point): self.assertRaises(GEOSIndexError, g.get_x) elif isinstance(g, Polygon): lr = g.shell self.assertEqual('LINEARRING EMPTY', lr.wkt) self.assertEqual(0, len(lr)) self.assertEqual(True, lr.empty) self.assertRaises(GEOSIndexError, lr.__getitem__, 0) else: self.assertRaises(GEOSIndexError, g.__getitem__, 0) def test20b_collections_of_collections(self): "Testing GeometryCollection handling of other collections." # Creating a GeometryCollection WKT string composed of other # collections and polygons. coll = [mp.wkt for mp in multipolygons if mp.valid] coll.extend([mls.wkt for mls in multilinestrings]) coll.extend([p.wkt for p in polygons]) coll.extend([mp.wkt for mp in multipoints]) gc_wkt = 'GEOMETRYCOLLECTION(%s)' % ','.join(coll) # Should construct ok from WKT gc1 = GEOSGeometry(gc_wkt) # Should also construct ok from individual geometry arguments. gc2 = GeometryCollection(*tuple(g for g in gc1)) # And, they should be equal. self.assertEqual(gc1, gc2) def test21_test_gdal(self): "Testing `ogr` and `srs` properties." if not gdal.HAS_GDAL: return g1 = fromstr('POINT(5 23)') self.assertEqual(True, isinstance(g1.ogr, gdal.OGRGeometry)) self.assertEqual(g1.srs, None) g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326) self.assertEqual(True, isinstance(g2.ogr, gdal.OGRGeometry)) self.assertEqual(True, isinstance(g2.srs, gdal.SpatialReference)) self.assertEqual(g2.hex, g2.ogr.hex) self.assertEqual('WGS 84', g2.srs.name) def test22_copy(self): "Testing use with the Python `copy` module." import copy poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))') cpy1 = copy.copy(poly) cpy2 = copy.deepcopy(poly) self.assertNotEqual(poly._ptr, cpy1._ptr) self.assertNotEqual(poly._ptr, cpy2._ptr) def test23_transform(self): "Testing `transform` method." if not gdal.HAS_GDAL: return orig = GEOSGeometry('POINT (-104.609 38.255)', 4326) trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774) # Using a srid, a SpatialReference object, and a CoordTransform object # for transformations. t1, t2, t3 = orig.clone(), orig.clone(), orig.clone() t1.transform(trans.srid) t2.transform(gdal.SpatialReference('EPSG:2774')) ct = gdal.CoordTransform(gdal.SpatialReference('WGS84'), gdal.SpatialReference(2774)) t3.transform(ct) # Testing use of the `clone` keyword. k1 = orig.clone() k2 = k1.transform(trans.srid, clone=True) self.assertEqual(k1, orig) self.assertNotEqual(k1, k2) prec = 3 for p in (t1, t2, t3, k2): self.assertAlmostEqual(trans.x, p.x, prec) self.assertAlmostEqual(trans.y, p.y, prec) def test24_extent(self): "Testing `extent` method." # The xmin, ymin, xmax, ymax of the MultiPoint should be returned. mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50)) self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent) pnt = Point(5.23, 17.8) # Extent of points is just the point itself repeated. self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent) # Testing on the 'real world' Polygon. poly = fromstr(polygons[3].wkt) ring = poly.shell x, y = ring.x, ring.y xmin, ymin = min(x), min(y) xmax, ymax = max(x), max(y) self.assertEqual((xmin, ymin, xmax, ymax), poly.extent) def test25_pickle(self): "Testing pickling and unpickling support." # Using both pickle and cPickle -- just 'cause. import pickle, cPickle # Creating a list of test geometries for pickling, # and setting the SRID on some of them. def get_geoms(lst, srid=None): return [GEOSGeometry(tg.wkt, srid) for tg in lst] tgeoms = get_geoms(points) tgeoms.extend(get_geoms(multilinestrings, 4326)) tgeoms.extend(get_geoms(polygons, 3084)) tgeoms.extend(get_geoms(multipolygons, 900913)) # The SRID won't be exported in GEOS 3.0 release candidates. no_srid = self.null_srid == -1 for geom in tgeoms: s1, s2 = cPickle.dumps(geom), pickle.dumps(geom) g1, g2 = cPickle.loads(s1), pickle.loads(s2) for tmpg in (g1, g2): self.assertEqual(geom, tmpg) if not no_srid: self.assertEqual(geom.srid, tmpg.srid) def test26_prepared(self): "Testing PreparedGeometry support." if not GEOS_PREPARE: return # Creating a simple multipolygon and getting a prepared version. mpoly = GEOSGeometry('MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))') prep = mpoly.prepared # A set of test points. pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)] covers = [True, True, False] # No `covers` op for regular GEOS geoms. for pnt, c in zip(pnts, covers): # Results should be the same (but faster) self.assertEqual(mpoly.contains(pnt), prep.contains(pnt)) self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt)) self.assertEqual(c, prep.covers(pnt)) def test26_line_merge(self): "Testing line merge support" ref_geoms = (fromstr('LINESTRING(1 1, 1 1, 3 3)'), fromstr('MULTILINESTRING((1 1, 3 3), (3 3, 4 2))'), ) ref_merged = (fromstr('LINESTRING(1 1, 3 3)'), fromstr('LINESTRING (1 1, 3 3, 4 2)'), ) for geom, merged in zip(ref_geoms, ref_merged): self.assertEqual(merged, geom.merged) def suite(): s = unittest.TestSuite() s.addTest(unittest.makeSuite(GEOSTest)) return s def run(verbosity=2): unittest.TextTestRunner(verbosity=verbosity).run(suite())