================== Database Functions ================== .. module:: django.db.models.functions :synopsis: Database Functions The classes documented below provide a way for users to use functions provided by the underlying database as annotations, aggregations, or filters in Django. Functions are also :doc:`expressions `, so they can be used and combined with other expressions like :ref:`aggregate functions `. We'll be using the following model in examples of each function:: class Author(models.Model): name = models.CharField(max_length=50) age = models.PositiveIntegerField(null=True, blank=True) alias = models.CharField(max_length=50, null=True, blank=True) goes_by = models.CharField(max_length=50, null=True, blank=True) We don't usually recommend allowing ``null=True`` for ``CharField`` since this allows the field to have two "empty values", but it's important for the ``Coalesce`` example below. ``Cast`` ======== .. class:: Cast(expression, output_field) Forces the result type of ``expression`` to be the one from ``output_field``. Usage example:: >>> from django.db.models import FloatField >>> from django.db.models.functions import Cast >>> Value.objects.create(integer=4) >>> value = Value.objects.annotate(as_float=Cast('integer', FloatField())).get() >>> print(value.as_float) 4.0 ``Coalesce`` ============ .. class:: Coalesce(*expressions, **extra) Accepts a list of at least two field names or expressions and returns the first non-null value (note that an empty string is not considered a null value). Each argument must be of a similar type, so mixing text and numbers will result in a database error. Usage examples:: >>> # Get a screen name from least to most public >>> from django.db.models import Sum, Value as V >>> from django.db.models.functions import Coalesce >>> Author.objects.create(name='Margaret Smith', goes_by='Maggie') >>> author = Author.objects.annotate( ... screen_name=Coalesce('alias', 'goes_by', 'name')).get() >>> print(author.screen_name) Maggie >>> # Prevent an aggregate Sum() from returning None >>> aggregated = Author.objects.aggregate( ... combined_age=Coalesce(Sum('age'), V(0)), ... combined_age_default=Sum('age')) >>> print(aggregated['combined_age']) 0 >>> print(aggregated['combined_age_default']) None .. warning:: A Python value passed to ``Coalesce`` on MySQL may be converted to an incorrect type unless explicitly cast to the correct database type: >>> from django.db.models import DateTimeField >>> from django.db.models.functions import Cast, Coalesce >>> from django.utils import timezone >>> now = timezone.now() >>> Coalesce('updated', Cast(now, DateTimeField())) ``Concat`` ========== .. class:: Concat(*expressions, **extra) Accepts a list of at least two text fields or expressions and returns the concatenated text. Each argument must be of a text or char type. If you want to concatenate a ``TextField()`` with a ``CharField()``, then be sure to tell Django that the ``output_field`` should be a ``TextField()``. This is also required when concatenating a ``Value`` as in the example below. This function will never have a null result. On backends where a null argument results in the entire expression being null, Django will ensure that each null part is converted to an empty string first. Usage example:: >>> # Get the display name as "name (goes_by)" >>> from django.db.models import CharField, Value as V >>> from django.db.models.functions import Concat >>> Author.objects.create(name='Margaret Smith', goes_by='Maggie') >>> author = Author.objects.annotate( ... screen_name=Concat('name', V(' ('), 'goes_by', V(')'), ... output_field=CharField())).get() >>> print(author.screen_name) Margaret Smith (Maggie) ``Greatest`` ============ .. class:: Greatest(*expressions, **extra) Accepts a list of at least two field names or expressions and returns the greatest value. Each argument must be of a similar type, so mixing text and numbers will result in a database error. Usage example:: class Blog(models.Model): body = models.TextField() modified = models.DateTimeField(auto_now=True) class Comment(models.Model): body = models.TextField() modified = models.DateTimeField(auto_now=True) blog = models.ForeignKey(Blog, on_delete=models.CASCADE) >>> from django.db.models.functions import Greatest >>> blog = Blog.objects.create(body='Greatest is the best.') >>> comment = Comment.objects.create(body='No, Least is better.', blog=blog) >>> comments = Comment.objects.annotate(last_updated=Greatest('modified', 'blog__modified')) >>> annotated_comment = comments.get() ``annotated_comment.last_updated`` will be the most recent of ``blog.modified`` and ``comment.modified``. .. warning:: The behavior of ``Greatest`` when one or more expression may be ``null`` varies between databases: - PostgreSQL: ``Greatest`` will return the largest non-null expression, or ``null`` if all expressions are ``null``. - SQLite, Oracle, and MySQL: If any expression is ``null``, ``Greatest`` will return ``null``. The PostgreSQL behavior can be emulated using ``Coalesce`` if you know a sensible minimum value to provide as a default. ``Least`` ========= .. class:: Least(*expressions, **extra) Accepts a list of at least two field names or expressions and returns the least value. Each argument must be of a similar type, so mixing text and numbers will result in a database error. .. warning:: The behavior of ``Least`` when one or more expression may be ``null`` varies between databases: - PostgreSQL: ``Least`` will return the smallest non-null expression, or ``null`` if all expressions are ``null``. - SQLite, Oracle, and MySQL: If any expression is ``null``, ``Least`` will return ``null``. The PostgreSQL behavior can be emulated using ``Coalesce`` if you know a sensible maximum value to provide as a default. ``Length`` ========== .. class:: Length(expression, **extra) Accepts a single text field or expression and returns the number of characters the value has. If the expression is null, then the length will also be null. Usage example:: >>> # Get the length of the name and goes_by fields >>> from django.db.models.functions import Length >>> Author.objects.create(name='Margaret Smith') >>> author = Author.objects.annotate( ... name_length=Length('name'), ... goes_by_length=Length('goes_by')).get() >>> print(author.name_length, author.goes_by_length) (14, None) It can also be registered as a transform. For example:: >>> from django.db.models import CharField >>> from django.db.models.functions import Length >>> CharField.register_lookup(Length, 'length') >>> # Get authors whose name is longer than 7 characters >>> authors = Author.objects.filter(name__length__gt=7) ``Lower`` ========= .. class:: Lower(expression, **extra) Accepts a single text field or expression and returns the lowercase representation. It can also be registered as a transform as described in :class:`Length`. Usage example:: >>> from django.db.models.functions import Lower >>> Author.objects.create(name='Margaret Smith') >>> author = Author.objects.annotate(name_lower=Lower('name')).get() >>> print(author.name_lower) margaret smith ``Now`` ======= .. class:: Now() Returns the database server's current date and time when the query is executed, typically using the SQL ``CURRENT_TIMESTAMP``. Usage example:: >>> from django.db.models.functions import Now >>> Article.objects.filter(published__lte=Now()) ]> .. admonition:: PostgreSQL considerations On PostgreSQL, the SQL ``CURRENT_TIMESTAMP`` returns the time that the current transaction started. Therefore for cross-database compatibility, ``Now()`` uses ``STATEMENT_TIMESTAMP`` instead. If you need the transaction timestamp, use :class:`django.contrib.postgres.functions.TransactionNow`. ``StrIndex`` ============ .. class:: StrIndex(expression, substring, **extra) .. versionadded:: 2.0 Returns a positive integer corresponding to the 1-indexed position of the first occurrence of ``substring`` inside another string, or 0 if the substring is not found. Usage example:: >>> from django.db.models.functions import StrIndex >>> Author.objects.create(name='Margaret Smith') >>> Author.objects.create(name='Smith, Margaret') >>> Author.objects.create(name='Margaret Jackson') >>> authors = Author.objects.annotate( ... smith_index=StrIndex('name', 'Smith')).order_by('smith_index') >>> authors.first().smith_index 0 >>> authors = Author.objects.annotate( ... smith_index=StrIndex('name', 'Smith')).filter(smith_index__gt=0) , ]> .. warning:: In MySQL, a database table's :ref:`collation` determines whether string comparisons (such as the ``expression`` and ``substring`` of this function) are case-sensitive. Comparisons are case-insensitive by default. ``Substr`` ========== .. class:: Substr(expression, pos, length=None, **extra) Returns a substring of length ``length`` from the field or expression starting at position ``pos``. The position is 1-indexed, so the position must be greater than 0. If ``length`` is ``None``, then the rest of the string will be returned. Usage example:: >>> # Set the alias to the first 5 characters of the name as lowercase >>> from django.db.models.functions import Substr, Lower >>> Author.objects.create(name='Margaret Smith') >>> Author.objects.update(alias=Lower(Substr('name', 1, 5))) 1 >>> print(Author.objects.get(name='Margaret Smith').alias) marga ``Upper`` ========= .. class:: Upper(expression, **extra) Accepts a single text field or expression and returns the uppercase representation. It can also be registered as a transform as described in :class:`Length`. Usage example:: >>> from django.db.models.functions import Upper >>> Author.objects.create(name='Margaret Smith') >>> author = Author.objects.annotate(name_upper=Upper('name')).get() >>> print(author.name_upper) MARGARET SMITH Date Functions ============== .. module:: django.db.models.functions.datetime We'll be using the following model in examples of each function:: class Experiment(models.Model): start_datetime = models.DateTimeField() start_date = models.DateField(null=True, blank=True) start_time = models.TimeField(null=True, blank=True) end_datetime = models.DateTimeField(null=True, blank=True) end_date = models.DateField(null=True, blank=True) end_time = models.TimeField(null=True, blank=True) ``Extract`` ----------- .. class:: Extract(expression, lookup_name=None, tzinfo=None, **extra) Extracts a component of a date as a number. Takes an ``expression`` representing a ``DateField`` or ``DateTimeField`` and a ``lookup_name``, and returns the part of the date referenced by ``lookup_name`` as an ``IntegerField``. Django usually uses the databases' extract function, so you may use any ``lookup_name`` that your database supports. A ``tzinfo`` subclass, usually provided by ``pytz``, can be passed to extract a value in a specific timezone. Given the datetime ``2015-06-15 23:30:01.000321+00:00``, the built-in ``lookup_name``\s return: * "year": 2015 * "month": 6 * "day": 15 * "week": 25 * "week_day": 2 * "hour": 23 * "minute": 30 * "second": 1 If a different timezone like ``Australia/Melbourne`` is active in Django, then the datetime is converted to the timezone before the value is extracted. The timezone offset for Melbourne in the example date above is +10:00. The values returned when this timezone is active will be the same as above except for: * "day": 16 * "week_day": 3 * "hour": 9 .. admonition:: ``week_day`` values The ``week_day`` ``lookup_type`` is calculated differently from most databases and from Python's standard functions. This function will return ``1`` for Sunday, ``2`` for Monday, through ``7`` for Saturday. The equivalent calculation in Python is:: >>> from datetime import datetime >>> dt = datetime(2015, 6, 15) >>> (dt.isoweekday() % 7) + 1 2 .. admonition:: ``week`` values The ``week`` ``lookup_type`` is calculated based on `ISO-8601 `_, i.e., a week starts on a Monday. The first week is the one with the majority of the days, i.e., a week that starts on or before Thursday. The value returned is in the range 1 to 52 or 53. Each ``lookup_name`` above has a corresponding ``Extract`` subclass (listed below) that should typically be used instead of the more verbose equivalent, e.g. use ``ExtractYear(...)`` rather than ``Extract(..., lookup_name='year')``. Usage example:: >>> from datetime import datetime >>> from django.db.models.functions import Extract >>> start = datetime(2015, 6, 15) >>> end = datetime(2015, 7, 2) >>> Experiment.objects.create( ... start_datetime=start, start_date=start.date(), ... end_datetime=end, end_date=end.date()) >>> # Add the experiment start year as a field in the QuerySet. >>> experiment = Experiment.objects.annotate( ... start_year=Extract('start_datetime', 'year')).get() >>> experiment.start_year 2015 >>> # How many experiments completed in the same year in which they started? >>> Experiment.objects.filter( ... start_datetime__year=Extract('end_datetime', 'year')).count() 1 ``DateField`` extracts ~~~~~~~~~~~~~~~~~~~~~~ .. class:: ExtractYear(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'year' .. class:: ExtractMonth(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'month' .. class:: ExtractDay(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'day' .. class:: ExtractWeekDay(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'week_day' .. class:: ExtractWeek(expression, tzinfo=None, **extra) .. versionadded:: 1.11 .. attribute:: lookup_name = 'week' These are logically equivalent to ``Extract('date_field', lookup_name)``. Each class is also a ``Transform`` registered on ``DateField`` and ``DateTimeField`` as ``__(lookup_name)``, e.g. ``__year``. Since ``DateField``\s don't have a time component, only ``Extract`` subclasses that deal with date-parts can be used with ``DateField``:: >>> from datetime import datetime >>> from django.utils import timezone >>> from django.db.models.functions import ( ... ExtractYear, ExtractMonth, ExtractDay, ExtractWeekDay ... ) >>> start_2015 = datetime(2015, 6, 15, 23, 30, 1, tzinfo=timezone.utc) >>> end_2015 = datetime(2015, 6, 16, 13, 11, 27, tzinfo=timezone.utc) >>> Experiment.objects.create( ... start_datetime=start_2015, start_date=start_2015.date(), ... end_datetime=end_2015, end_date=end_2015.date()) >>> Experiment.objects.annotate( ... year=ExtractYear('start_date'), ... month=ExtractMonth('start_date'), ... day=ExtractDay('start_date'), ... weekday=ExtractWeekDay('start_date'), ... ).values('year', 'month', 'day', 'weekday').get( ... end_date__year=ExtractYear('start_date'), ... ) {'year': 2015, 'month': 6, 'day': 15, 'weekday': 2} ``DateTimeField`` extracts ~~~~~~~~~~~~~~~~~~~~~~~~~~ In addition to the following, all extracts for ``DateField`` listed above may also be used on ``DateTimeField``\s . .. class:: ExtractHour(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'hour' .. class:: ExtractMinute(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'minute' .. class:: ExtractSecond(expression, tzinfo=None, **extra) .. attribute:: lookup_name = 'second' These are logically equivalent to ``Extract('datetime_field', lookup_name)``. Each class is also a ``Transform`` registered on ``DateTimeField`` as ``__(lookup_name)``, e.g. ``__minute``. ``DateTimeField`` examples:: >>> from datetime import datetime >>> from django.utils import timezone >>> from django.db.models.functions import ( ... ExtractYear, ExtractMonth, ExtractDay, ExtractWeekDay, ... ExtractHour, ExtractMinute, ExtractSecond, ... ) >>> start_2015 = datetime(2015, 6, 15, 23, 30, 1, tzinfo=timezone.utc) >>> end_2015 = datetime(2015, 6, 16, 13, 11, 27, tzinfo=timezone.utc) >>> Experiment.objects.create( ... start_datetime=start_2015, start_date=start_2015.date(), ... end_datetime=end_2015, end_date=end_2015.date()) >>> Experiment.objects.annotate( ... year=ExtractYear('start_datetime'), ... month=ExtractMonth('start_datetime'), ... day=ExtractDay('start_datetime'), ... weekday=ExtractWeekDay('start_datetime'), ... hour=ExtractHour('start_datetime'), ... minute=ExtractMinute('start_datetime'), ... second=ExtractSecond('start_datetime'), ... ).values( ... 'year', 'month', 'day', 'weekday', 'hour', 'minute', 'second', ... ).get(end_datetime__year=ExtractYear('start_datetime')) {'year': 2015, 'month': 6, 'day': 15, 'weekday': 2, 'hour': 23, 'minute': 30, 'second': 1} When :setting:`USE_TZ` is ``True`` then datetimes are stored in the database in UTC. If a different timezone is active in Django, the datetime is converted to that timezone before the value is extracted. The example below converts to the Melbourne timezone (UTC +10:00), which changes the day, weekday, and hour values that are returned:: >>> import pytz >>> tzinfo = pytz.timezone('Australia/Melbourne') # UTC+10:00 >>> with timezone.override(tzinfo): ... Experiment.objects.annotate( ... day=ExtractDay('start_datetime'), ... weekday=ExtractWeekDay('start_datetime'), ... hour=ExtractHour('start_datetime'), ... ).values('day', 'weekday', 'hour').get( ... end_datetime__year=ExtractYear('start_datetime'), ... ) {'day': 16, 'weekday': 3, 'hour': 9} Explicitly passing the timezone to the ``Extract`` function behaves in the same way, and takes priority over an active timezone:: >>> import pytz >>> tzinfo = pytz.timezone('Australia/Melbourne') >>> Experiment.objects.annotate( ... day=ExtractDay('start_datetime', tzinfo=melb), ... weekday=ExtractWeekDay('start_datetime', tzinfo=melb), ... hour=ExtractHour('start_datetime', tzinfo=melb), ... ).values('day', 'weekday', 'hour').get( ... end_datetime__year=ExtractYear('start_datetime'), ... ) {'day': 16, 'weekday': 3, 'hour': 9} ``Trunc`` --------- .. class:: Trunc(expression, kind, output_field=None, tzinfo=None, **extra) Truncates a date up to a significant component. When you only care if something happened in a particular year, hour, or day, but not the exact second, then ``Trunc`` (and its subclasses) can be useful to filter or aggregate your data. For example, you can use ``Trunc`` to calculate the number of sales per day. ``Trunc`` takes a single ``expression``, representing a ``DateField``, ``TimeField``, or ``DateTimeField``, a ``kind`` representing a date or time part, and an ``output_field`` that's either ``DateTimeField()``, ``TimeField()``, or ``DateField()``. It returns a datetime, date, or time depending on ``output_field``, with fields up to ``kind`` set to their minimum value. If ``output_field`` is omitted, it will default to the ``output_field`` of ``expression``. A ``tzinfo`` subclass, usually provided by ``pytz``, can be passed to truncate a value in a specific timezone. Given the datetime ``2015-06-15 14:30:50.000321+00:00``, the built-in ``kind``\s return: * "year": 2015-01-01 00:00:00+00:00 * "month": 2015-06-01 00:00:00+00:00 * "day": 2015-06-15 00:00:00+00:00 * "hour": 2015-06-15 14:00:00+00:00 * "minute": 2015-06-15 14:30:00+00:00 * "second": 2015-06-15 14:30:50+00:00 If a different timezone like ``Australia/Melbourne`` is active in Django, then the datetime is converted to the new timezone before the value is truncated. The timezone offset for Melbourne in the example date above is +10:00. The values returned when this timezone is active will be: * "year": 2015-01-01 00:00:00+11:00 * "month": 2015-06-01 00:00:00+10:00 * "day": 2015-06-16 00:00:00+10:00 * "hour": 2015-06-16 00:00:00+10:00 * "minute": 2015-06-16 00:30:00+10:00 * "second": 2015-06-16 00:30:50+10:00 The year has an offset of +11:00 because the result transitioned into daylight saving time. Each ``kind`` above has a corresponding ``Trunc`` subclass (listed below) that should typically be used instead of the more verbose equivalent, e.g. use ``TruncYear(...)`` rather than ``Trunc(..., kind='year')``. The subclasses are all defined as transforms, but they aren't registered with any fields, because the obvious lookup names are already reserved by the ``Extract`` subclasses. Usage example:: >>> from datetime import datetime >>> from django.db.models import Count, DateTimeField >>> from django.db.models.functions import Trunc >>> Experiment.objects.create(start_datetime=datetime(2015, 6, 15, 14, 30, 50, 321)) >>> Experiment.objects.create(start_datetime=datetime(2015, 6, 15, 14, 40, 2, 123)) >>> Experiment.objects.create(start_datetime=datetime(2015, 12, 25, 10, 5, 27, 999)) >>> experiments_per_day = Experiment.objects.annotate( ... start_day=Trunc('start_datetime', 'day', output_field=DateTimeField()) ... ).values('start_day').annotate(experiments=Count('id')) >>> for exp in experiments_per_day: ... print(exp['start_day'], exp['experiments']) ... 2015-06-15 00:00:00 2 2015-12-25 00:00:00 1 >>> experiments = Experiment.objects.annotate( ... start_day=Trunc('start_datetime', 'day', output_field=DateTimeField()) ... ).filter(start_day=datetime(2015, 6, 15)) >>> for exp in experiments: ... print(exp.start_datetime) ... 2015-06-15 14:30:50.000321 2015-06-15 14:40:02.000123 ``DateField`` truncation ~~~~~~~~~~~~~~~~~~~~~~~~ .. class:: TruncYear(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'year' .. class:: TruncMonth(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'month' These are logically equivalent to ``Trunc('date_field', kind)``. They truncate all parts of the date up to ``kind`` which allows grouping or filtering dates with less precision. ``expression`` can have an ``output_field`` of either ``DateField`` or ``DateTimeField``. Since ``DateField``\s don't have a time component, only ``Trunc`` subclasses that deal with date-parts can be used with ``DateField``:: >>> from datetime import datetime >>> from django.db.models import Count >>> from django.db.models.functions import TruncMonth, TruncYear >>> from django.utils import timezone >>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc) >>> start2 = datetime(2015, 6, 15, 14, 40, 2, 123, tzinfo=timezone.utc) >>> start3 = datetime(2015, 12, 31, 17, 5, 27, 999, tzinfo=timezone.utc) >>> Experiment.objects.create(start_datetime=start1, start_date=start1.date()) >>> Experiment.objects.create(start_datetime=start2, start_date=start2.date()) >>> Experiment.objects.create(start_datetime=start3, start_date=start3.date()) >>> experiments_per_year = Experiment.objects.annotate( ... year=TruncYear('start_date')).values('year').annotate( ... experiments=Count('id')) >>> for exp in experiments_per_year: ... print(exp['year'], exp['experiments']) ... 2014-01-01 1 2015-01-01 2 >>> import pytz >>> melb = pytz.timezone('Australia/Melbourne') >>> experiments_per_month = Experiment.objects.annotate( ... month=TruncMonth('start_datetime', tzinfo=melb)).values('month').annotate( ... experiments=Count('id')) >>> for exp in experiments_per_month: ... print(exp['month'], exp['experiments']) ... 2015-06-01 00:00:00+10:00 1 2016-01-01 00:00:00+11:00 1 2014-06-01 00:00:00+10:00 1 ``TimeField`` truncation ~~~~~~~~~~~~~~~~~~~~~~~~ .. versionadded:: 1.11 .. class:: TruncHour(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'hour' .. class:: TruncMinute(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'minute' .. class:: TruncSecond(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'second' These are logically equivalent to ``Trunc('time_field', kind)``. They truncate all parts of the time up to ``kind`` which allows grouping or filtering times with less precision. ``expression`` can have an ``output_field`` of either ``TimeField`` or ``DateTimeField``. Since ``TimeField``\s don't have a date component, only ``Trunc`` subclasses that deal with time-parts can be used with ``TimeField``:: >>> from datetime import datetime >>> from django.db.models import Count, TimeField >>> from django.db.models.functions import TruncHour >>> from django.utils import timezone >>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc) >>> start2 = datetime(2014, 6, 15, 14, 40, 2, 123, tzinfo=timezone.utc) >>> start3 = datetime(2015, 12, 31, 17, 5, 27, 999, tzinfo=timezone.utc) >>> Experiment.objects.create(start_datetime=start1, start_time=start1.time()) >>> Experiment.objects.create(start_datetime=start2, start_time=start2.time()) >>> Experiment.objects.create(start_datetime=start3, start_time=start3.time()) >>> experiments_per_hour = Experiment.objects.annotate( ... hour=TruncHour('start_datetime', output_field=TimeField()), ... ).values('hour').annotate(experiments=Count('id')) >>> for exp in experiments_per_hour: ... print(exp['hour'], exp['experiments']) ... 14:00:00 2 17:00:00 1 >>> import pytz >>> melb = pytz.timezone('Australia/Melbourne') >>> experiments_per_hour = Experiment.objects.annotate( ... hour=TruncHour('start_datetime', tzinfo=melb), ... ).values('hour').annotate(experiments=Count('id')) >>> for exp in experiments_per_hour: ... print(exp['hour'], exp['experiments']) ... 2014-06-16 00:00:00+10:00 2 2016-01-01 04:00:00+11:00 1 ``DateTimeField`` truncation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. class:: TruncDate(expression, **extra) .. attribute:: lookup_name = 'date' .. attribute:: output_field = DateField() ``TruncDate`` casts ``expression`` to a date rather than using the built-in SQL truncate function. It's also registered as a transform on ``DateTimeField`` as ``__date``. .. class:: TruncTime(expression, **extra) .. versionadded:: 1.11 .. attribute:: lookup_name = 'time' .. attribute:: output_field = TimeField() ``TruncTime`` casts ``expression`` to a time rather than using the built-in SQL truncate function. It's also registered as a transform on ``DateTimeField`` as ``__time``. .. class:: TruncDay(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'day' .. class:: TruncHour(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'hour' .. class:: TruncMinute(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'minute' .. class:: TruncSecond(expression, output_field=None, tzinfo=None, **extra) .. attribute:: kind = 'second' These are logically equivalent to ``Trunc('datetime_field', kind)``. They truncate all parts of the date up to ``kind`` and allow grouping or filtering datetimes with less precision. ``expression`` must have an ``output_field`` of ``DateTimeField``. Usage example:: >>> from datetime import date, datetime >>> from django.db.models import Count >>> from django.db.models.functions import ( ... TruncDate, TruncDay, TruncHour, TruncMinute, TruncSecond, ... ) >>> from django.utils import timezone >>> import pytz >>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc) >>> Experiment.objects.create(start_datetime=start1, start_date=start1.date()) >>> melb = pytz.timezone('Australia/Melbourne') >>> Experiment.objects.annotate( ... date=TruncDate('start_datetime'), ... day=TruncDay('start_datetime', tzinfo=melb), ... hour=TruncHour('start_datetime', tzinfo=melb), ... minute=TruncMinute('start_datetime'), ... second=TruncSecond('start_datetime'), ... ).values('date', 'day', 'hour', 'minute', 'second').get() {'date': datetime.date(2014, 6, 15), 'day': datetime.datetime(2014, 6, 16, 0, 0, tzinfo=), 'hour': datetime.datetime(2014, 6, 16, 0, 0, tzinfo=), 'minute': 'minute': datetime.datetime(2014, 6, 15, 14, 30, tzinfo=), 'second': datetime.datetime(2014, 6, 15, 14, 30, 50, tzinfo=) }