import re import sys from urlparse import urlsplit, urlunsplit from xml.dom.minidom import parseString, Node from django.conf import settings from django.core import mail from django.core.management import call_command from django.core.urlresolvers import clear_url_caches from django.db import transaction, connection, connections, DEFAULT_DB_ALIAS from django.http import QueryDict from django.test import _doctest as doctest from django.test.client import Client from django.utils import simplejson, unittest as ut2 from django.utils.encoding import smart_str from django.utils.functional import wraps __all__ = ('DocTestRunner', 'OutputChecker', 'TestCase', 'TransactionTestCase', 'skipIfDBFeature', 'skipUnlessDBFeature') try: all except NameError: from django.utils.itercompat import all normalize_long_ints = lambda s: re.sub(r'(?" if not want.startswith('%s' want = wrapper % want got = wrapper % got # Parse the want and got strings, and compare the parsings. try: want_root = parseString(want).firstChild got_root = parseString(got).firstChild except: return False return check_element(want_root, got_root) def check_output_json(self, want, got, optionsflags): "Tries to compare want and got as if they were JSON-encoded data" want, got = self._strip_quotes(want, got) try: want_json = simplejson.loads(want) got_json = simplejson.loads(got) except: return False return want_json == got_json def _strip_quotes(self, want, got): """ Strip quotes of doctests output values: >>> o = OutputChecker() >>> o._strip_quotes("'foo'") "foo" >>> o._strip_quotes('"foo"') "foo" >>> o._strip_quotes("u'foo'") "foo" >>> o._strip_quotes('u"foo"') "foo" """ def is_quoted_string(s): s = s.strip() return (len(s) >= 2 and s[0] == s[-1] and s[0] in ('"', "'")) def is_quoted_unicode(s): s = s.strip() return (len(s) >= 3 and s[0] == 'u' and s[1] == s[-1] and s[1] in ('"', "'")) if is_quoted_string(want) and is_quoted_string(got): want = want.strip()[1:-1] got = got.strip()[1:-1] elif is_quoted_unicode(want) and is_quoted_unicode(got): want = want.strip()[2:-1] got = got.strip()[2:-1] return want, got class DocTestRunner(doctest.DocTestRunner): def __init__(self, *args, **kwargs): doctest.DocTestRunner.__init__(self, *args, **kwargs) self.optionflags = doctest.ELLIPSIS def report_unexpected_exception(self, out, test, example, exc_info): doctest.DocTestRunner.report_unexpected_exception(self, out, test, example, exc_info) # Rollback, in case of database errors. Otherwise they'd have # side effects on other tests. for conn in connections: transaction.rollback_unless_managed(using=conn) class _AssertNumQueriesContext(object): def __init__(self, test_case, num, connection): self.test_case = test_case self.num = num self.connection = connection def __enter__(self): self.old_debug_cursor = self.connection.use_debug_cursor self.connection.use_debug_cursor = True self.starting_queries = len(self.connection.queries) return self def __exit__(self, exc_type, exc_value, traceback): self.connection.use_debug_cursor = self.old_debug_cursor if exc_type is not None: return final_queries = len(self.connection.queries) executed = final_queries - self.starting_queries self.test_case.assertEqual( executed, self.num, "%d queries executed, %d expected" % ( executed, self.num ) ) class TransactionTestCase(ut2.TestCase): # The class we'll use for the test client self.client. # Can be overridden in derived classes. client_class = Client def _pre_setup(self): """Performs any pre-test setup. This includes: * Flushing the database. * If the Test Case class has a 'fixtures' member, installing the named fixtures. * If the Test Case class has a 'urls' member, replace the ROOT_URLCONF with it. * Clearing the mail test outbox. """ self._fixture_setup() self._urlconf_setup() mail.outbox = [] def _fixture_setup(self): # If the test case has a multi_db=True flag, flush all databases. # Otherwise, just flush default. if getattr(self, 'multi_db', False): databases = connections else: databases = [DEFAULT_DB_ALIAS] for db in databases: call_command('flush', verbosity=0, interactive=False, database=db) if hasattr(self, 'fixtures'): # We have to use this slightly awkward syntax due to the fact # that we're using *args and **kwargs together. call_command('loaddata', *self.fixtures, **{'verbosity': 0, 'database': db}) def _urlconf_setup(self): if hasattr(self, 'urls'): self._old_root_urlconf = settings.ROOT_URLCONF settings.ROOT_URLCONF = self.urls clear_url_caches() def __call__(self, result=None): """ Wrapper around default __call__ method to perform common Django test set up. This means that user-defined Test Cases aren't required to include a call to super().setUp(). """ self.client = self.client_class() try: self._pre_setup() except (KeyboardInterrupt, SystemExit): raise except Exception: import sys result.addError(self, sys.exc_info()) return super(TransactionTestCase, self).__call__(result) try: self._post_teardown() except (KeyboardInterrupt, SystemExit): raise except Exception: import sys result.addError(self, sys.exc_info()) return def _post_teardown(self): """ Performs any post-test things. This includes: * Putting back the original ROOT_URLCONF if it was changed. * Force closing the connection, so that the next test gets a clean cursor. """ self._fixture_teardown() self._urlconf_teardown() # Some DB cursors include SQL statements as part of cursor # creation. If you have a test that does rollback, the effect # of these statements is lost, which can effect the operation # of tests (e.g., losing a timezone setting causing objects to # be created with the wrong time). # To make sure this doesn't happen, get a clean connection at the # start of every test. for connection in connections.all(): connection.close() def _fixture_teardown(self): pass def _urlconf_teardown(self): if hasattr(self, '_old_root_urlconf'): settings.ROOT_URLCONF = self._old_root_urlconf clear_url_caches() def assertRedirects(self, response, expected_url, status_code=302, target_status_code=200, host=None, msg_prefix=''): """Asserts that a response redirected to a specific URL, and that the redirect URL can be loaded. Note that assertRedirects won't work for external links since it uses TestClient to do a request. """ if msg_prefix: msg_prefix += ": " if hasattr(response, 'redirect_chain'): # The request was a followed redirect self.failUnless(len(response.redirect_chain) > 0, msg_prefix + "Response didn't redirect as expected: Response" " code was %d (expected %d)" % (response.status_code, status_code)) self.assertEqual(response.redirect_chain[0][1], status_code, msg_prefix + "Initial response didn't redirect as expected:" " Response code was %d (expected %d)" % (response.redirect_chain[0][1], status_code)) url, status_code = response.redirect_chain[-1] self.assertEqual(response.status_code, target_status_code, msg_prefix + "Response didn't redirect as expected: Final" " Response code was %d (expected %d)" % (response.status_code, target_status_code)) else: # Not a followed redirect self.assertEqual(response.status_code, status_code, msg_prefix + "Response didn't redirect as expected: Response" " code was %d (expected %d)" % (response.status_code, status_code)) url = response['Location'] scheme, netloc, path, query, fragment = urlsplit(url) redirect_response = response.client.get(path, QueryDict(query)) # Get the redirection page, using the same client that was used # to obtain the original response. self.assertEqual(redirect_response.status_code, target_status_code, msg_prefix + "Couldn't retrieve redirection page '%s':" " response code was %d (expected %d)" % (path, redirect_response.status_code, target_status_code)) e_scheme, e_netloc, e_path, e_query, e_fragment = urlsplit(expected_url) if not (e_scheme or e_netloc): expected_url = urlunsplit(('http', host or 'testserver', e_path, e_query, e_fragment)) self.assertEqual(url, expected_url, msg_prefix + "Response redirected to '%s', expected '%s'" % (url, expected_url)) def assertContains(self, response, text, count=None, status_code=200, msg_prefix=''): """ Asserts that a response indicates that some content was retrieved successfully, (i.e., the HTTP status code was as expected), and that ``text`` occurs ``count`` times in the content of the response. If ``count`` is None, the count doesn't matter - the assertion is true if the text occurs at least once in the response. """ if msg_prefix: msg_prefix += ": " self.assertEqual(response.status_code, status_code, msg_prefix + "Couldn't retrieve content: Response code was %d" " (expected %d)" % (response.status_code, status_code)) text = smart_str(text, response._charset) real_count = response.content.count(text) if count is not None: self.assertEqual(real_count, count, msg_prefix + "Found %d instances of '%s' in response" " (expected %d)" % (real_count, text, count)) else: self.failUnless(real_count != 0, msg_prefix + "Couldn't find '%s' in response" % text) def assertNotContains(self, response, text, status_code=200, msg_prefix=''): """ Asserts that a response indicates that some content was retrieved successfully, (i.e., the HTTP status code was as expected), and that ``text`` doesn't occurs in the content of the response. """ if msg_prefix: msg_prefix += ": " self.assertEqual(response.status_code, status_code, msg_prefix + "Couldn't retrieve content: Response code was %d" " (expected %d)" % (response.status_code, status_code)) text = smart_str(text, response._charset) self.assertEqual(response.content.count(text), 0, msg_prefix + "Response should not contain '%s'" % text) def assertFormError(self, response, form, field, errors, msg_prefix=''): """ Asserts that a form used to render the response has a specific field error. """ if msg_prefix: msg_prefix += ": " # Put context(s) into a list to simplify processing. contexts = to_list(response.context) if not contexts: self.fail(msg_prefix + "Response did not use any contexts to " "render the response") # Put error(s) into a list to simplify processing. errors = to_list(errors) # Search all contexts for the error. found_form = False for i,context in enumerate(contexts): if form not in context: continue found_form = True for err in errors: if field: if field in context[form].errors: field_errors = context[form].errors[field] self.failUnless(err in field_errors, msg_prefix + "The field '%s' on form '%s' in" " context %d does not contain the error '%s'" " (actual errors: %s)" % (field, form, i, err, repr(field_errors))) elif field in context[form].fields: self.fail(msg_prefix + "The field '%s' on form '%s'" " in context %d contains no errors" % (field, form, i)) else: self.fail(msg_prefix + "The form '%s' in context %d" " does not contain the field '%s'" % (form, i, field)) else: non_field_errors = context[form].non_field_errors() self.failUnless(err in non_field_errors, msg_prefix + "The form '%s' in context %d does not" " contain the non-field error '%s'" " (actual errors: %s)" % (form, i, err, non_field_errors)) if not found_form: self.fail(msg_prefix + "The form '%s' was not used to render the" " response" % form) def assertTemplateUsed(self, response, template_name, msg_prefix=''): """ Asserts that the template with the provided name was used in rendering the response. """ if msg_prefix: msg_prefix += ": " template_names = [t.name for t in response.templates] if not template_names: self.fail(msg_prefix + "No templates used to render the response") self.failUnless(template_name in template_names, msg_prefix + "Template '%s' was not a template used to render" " the response. Actual template(s) used: %s" % (template_name, u', '.join(template_names))) def assertTemplateNotUsed(self, response, template_name, msg_prefix=''): """ Asserts that the template with the provided name was NOT used in rendering the response. """ if msg_prefix: msg_prefix += ": " template_names = [t.name for t in response.templates] self.failIf(template_name in template_names, msg_prefix + "Template '%s' was used unexpectedly in rendering" " the response" % template_name) def assertQuerysetEqual(self, qs, values, transform=repr): return self.assertEqual(map(transform, qs), values) def assertNumQueries(self, num, func=None, *args, **kwargs): using = kwargs.pop("using", DEFAULT_DB_ALIAS) connection = connections[using] context = _AssertNumQueriesContext(self, num, connection) if func is None: return context # Basically emulate the `with` statement here. context.__enter__() try: func(*args, **kwargs) except: context.__exit__(*sys.exc_info()) raise else: context.__exit__(*sys.exc_info()) def connections_support_transactions(): """ Returns True if all connections support transactions. This is messy because 2.4 doesn't support any or all. """ return all(conn.features.supports_transactions for conn in connections.all()) class TestCase(TransactionTestCase): """ Does basically the same as TransactionTestCase, but surrounds every test with a transaction, monkey-patches the real transaction management routines to do nothing, and rollsback the test transaction at the end of the test. You have to use TransactionTestCase, if you need transaction management inside a test. """ def _fixture_setup(self): if not connections_support_transactions(): return super(TestCase, self)._fixture_setup() # If the test case has a multi_db=True flag, setup all databases. # Otherwise, just use default. if getattr(self, 'multi_db', False): databases = connections else: databases = [DEFAULT_DB_ALIAS] for db in databases: transaction.enter_transaction_management(using=db) transaction.managed(True, using=db) disable_transaction_methods() from django.contrib.sites.models import Site Site.objects.clear_cache() for db in databases: if hasattr(self, 'fixtures'): call_command('loaddata', *self.fixtures, **{ 'verbosity': 0, 'commit': False, 'database': db }) def _fixture_teardown(self): if not connections_support_transactions(): return super(TestCase, self)._fixture_teardown() # If the test case has a multi_db=True flag, teardown all databases. # Otherwise, just teardown default. if getattr(self, 'multi_db', False): databases = connections else: databases = [DEFAULT_DB_ALIAS] restore_transaction_methods() for db in databases: transaction.rollback(using=db) transaction.leave_transaction_management(using=db) def _deferredSkip(condition, reason): def decorator(test_func): if not (isinstance(test_func, type) and issubclass(test_func, TestCase)): @wraps(test_func) def skip_wrapper(*args, **kwargs): if condition(): raise ut2.SkipTest(reason) return test_func(*args, **kwargs) test_item = skip_wrapper else: test_item = test_func test_item.__unittest_skip_why__ = reason return test_item return decorator def skipIfDBFeature(feature): "Skip a test if a database has the named feature" return _deferredSkip(lambda: getattr(connection.features, feature), "Database has feature %s" % feature) def skipUnlessDBFeature(feature): "Skip a test unless a database has the named feature" return _deferredSkip(lambda: not getattr(connection.features, feature), "Database doesn't support feature %s" % feature)