import collections import imp from importlib import import_module from optparse import OptionParser, NO_DEFAULT import os import sys from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.management.base import BaseCommand, CommandError, handle_default_options from django.core.management.color import color_style from django.utils import six # For backwards compatibility: get_version() used to be in this module. from django import get_version # A cache of loaded commands, so that call_command # doesn't have to reload every time it's called. _commands = None def find_commands(management_dir): """ Given a path to a management directory, returns a list of all the command names that are available. Returns an empty list if no commands are defined. """ command_dir = os.path.join(management_dir, 'commands') try: return [f[:-3] for f in os.listdir(command_dir) if not f.startswith('_') and f.endswith('.py')] except OSError: return [] def find_management_module(app_name): """ Determines the path to the management module for the given app_name, without actually importing the application or the management module. Raises ImportError if the management module cannot be found for any reason. """ parts = app_name.split('.') parts.append('management') parts.reverse() part = parts.pop() path = None # When using manage.py, the project module is added to the path, # loaded, then removed from the path. This means that # testproject.testapp.models can be loaded in future, even if # testproject isn't in the path. When looking for the management # module, we need look for the case where the project name is part # of the app_name but the project directory itself isn't on the path. try: f, path, descr = imp.find_module(part, path) except ImportError as e: if os.path.basename(os.getcwd()) != part: raise e else: if f: f.close() while parts: part = parts.pop() f, path, descr = imp.find_module(part, [path] if path else None) if f: f.close() return path def load_command_class(app_name, name): """ Given a command name and an application name, returns the Command class instance. All errors raised by the import process (ImportError, AttributeError) are allowed to propagate. """ module = import_module('%s.management.commands.%s' % (app_name, name)) return module.Command() def get_commands(): """ Returns a dictionary mapping command names to their callback applications. This works by looking for a management.commands package in django.core, and in each installed application -- if a commands package exists, all commands in that package are registered. Core commands are always included. If a settings module has been specified, user-defined commands will also be included. The dictionary is in the format {command_name: app_name}. Key-value pairs from this dictionary can then be used in calls to load_command_class(app_name, command_name) If a specific version of a command must be loaded (e.g., with the startapp command), the instantiated module can be placed in the dictionary in place of the application name. The dictionary is cached on the first call and reused on subsequent calls. """ global _commands if _commands is None: _commands = dict((name, 'django.core') for name in find_commands(__path__[0])) # Find the installed apps try: settings.INSTALLED_APPS except ImproperlyConfigured: # Still useful for commands that do not require functional # settings, like startproject or help. app_names = [] else: # Populate the app registry outside of the try/except block to # avoid catching ImproperlyConfigured errors that aren't caused # by the absence of a settings module. from django.apps import apps app_configs = apps.get_app_configs() app_names = [app_config.name for app_config in app_configs] # Find and load the management module for each installed app. for app_name in app_names: try: path = find_management_module(app_name) _commands.update(dict((name, app_name) for name in find_commands(path))) except ImportError: pass # No management module - ignore this app return _commands def call_command(name, *args, **options): """ Calls the given command, with the given options and args/kwargs. This is the primary API you should use for calling specific commands. Some examples: call_command('syncdb') call_command('shell', plain=True) call_command('sqlall', 'myapp') """ # Load the command object. try: app_name = get_commands()[name] except KeyError: raise CommandError("Unknown command: %r" % name) if isinstance(app_name, BaseCommand): # If the command is already loaded, use it directly. klass = app_name else: klass = load_command_class(app_name, name) # Grab out a list of defaults from the options. optparse does this for us # when the script runs from the command line, but since call_command can # be called programmatically, we need to simulate the loading and handling # of defaults (see #10080 for details). defaults = {} for opt in klass.option_list: if opt.default is NO_DEFAULT: defaults[opt.dest] = None else: defaults[opt.dest] = opt.default defaults.update(options) return klass.execute(*args, **defaults) class LaxOptionParser(OptionParser): """ An option parser that doesn't raise any errors on unknown options. This is needed because the --settings and --pythonpath options affect the commands (and thus the options) that are available to the user. """ def error(self, msg): pass def print_help(self): """Output nothing. The lax options are included in the normal option parser, so under normal usage, we don't need to print the lax options. """ pass def print_lax_help(self): """Output the basic options available to every command. This just redirects to the default print_help() behavior. """ OptionParser.print_help(self) def _process_args(self, largs, rargs, values): """ Overrides OptionParser._process_args to exclusively handle default options and ignore args and other options. This overrides the behavior of the super class, which stop parsing at the first unrecognized option. """ while rargs: arg = rargs[0] try: if arg[0:2] == "--" and len(arg) > 2: # process a single long option (possibly with value(s)) # the superclass code pops the arg off rargs self._process_long_opt(rargs, values) elif arg[:1] == "-" and len(arg) > 1: # process a cluster of short options (possibly with # value(s) for the last one only) # the superclass code pops the arg off rargs self._process_short_opts(rargs, values) else: # it's either a non-default option or an arg # either way, add it to the args list so we can keep # dealing with options del rargs[0] raise Exception except: # Needed because we might need to catch a SystemExit largs.append(arg) class ManagementUtility(object): """ Encapsulates the logic of the django-admin.py and manage.py utilities. A ManagementUtility has a number of commands, which can be manipulated by editing the self.commands dictionary. """ def __init__(self, argv=None): self.argv = argv or sys.argv[:] self.prog_name = os.path.basename(self.argv[0]) def main_help_text(self, commands_only=False): """ Returns the script's main help text, as a string. """ if commands_only: usage = sorted(get_commands().keys()) else: usage = [ "", "Type '%s help ' for help on a specific subcommand." % self.prog_name, "", "Available subcommands:", ] commands_dict = collections.defaultdict(lambda: []) for name, app in six.iteritems(get_commands()): if app == 'django.core': app = 'django' else: app = app.rpartition('.')[-1] commands_dict[app].append(name) style = color_style() for app in sorted(commands_dict.keys()): usage.append("") usage.append(style.NOTICE("[%s]" % app)) for name in sorted(commands_dict[app]): usage.append(" %s" % name) # Output an extra note if settings are not properly configured try: from django.conf import settings settings.INSTALLED_APPS except ImproperlyConfigured as e: usage.append(style.NOTICE( "Note that only Django core commands are listed as settings " "are not properly configured (error: %s)." % e)) return '\n'.join(usage) def fetch_command(self, subcommand): """ Tries to fetch the given subcommand, printing a message with the appropriate command called from the command line (usually "django-admin.py" or "manage.py") if it can't be found. """ # Get commands outside of try block to prevent swallowing exceptions commands = get_commands() try: app_name = commands[subcommand] except KeyError: sys.stderr.write("Unknown command: %r\nType '%s help' for usage.\n" % (subcommand, self.prog_name)) sys.exit(1) if isinstance(app_name, BaseCommand): # If the command is already loaded, use it directly. klass = app_name else: klass = load_command_class(app_name, subcommand) return klass def autocomplete(self): """ Output completion suggestions for BASH. The output of this function is passed to BASH's `COMREPLY` variable and treated as completion suggestions. `COMREPLY` expects a space separated string as the result. The `COMP_WORDS` and `COMP_CWORD` BASH environment variables are used to get information about the cli input. Please refer to the BASH man-page for more information about this variables. Subcommand options are saved as pairs. A pair consists of the long option string (e.g. '--exclude') and a boolean value indicating if the option requires arguments. When printing to stdout, a equal sign is appended to options which require arguments. Note: If debugging this function, it is recommended to write the debug output in a separate file. Otherwise the debug output will be treated and formatted as potential completion suggestions. """ # Don't complete if user hasn't sourced bash_completion file. if 'DJANGO_AUTO_COMPLETE' not in os.environ: return cwords = os.environ['COMP_WORDS'].split()[1:] cword = int(os.environ['COMP_CWORD']) try: curr = cwords[cword - 1] except IndexError: curr = '' subcommands = list(get_commands()) + ['help'] options = [('--help', None)] # subcommand if cword == 1: print(' '.join(sorted(filter(lambda x: x.startswith(curr), subcommands)))) # subcommand options # special case: the 'help' subcommand has no options elif cwords[0] in subcommands and cwords[0] != 'help': subcommand_cls = self.fetch_command(cwords[0]) # special case: 'runfcgi' stores additional options as # 'key=value' pairs if cwords[0] == 'runfcgi': from django.core.servers.fastcgi import FASTCGI_OPTIONS options += [(k, 1) for k in FASTCGI_OPTIONS] # special case: add the names of installed apps to options elif cwords[0] in ('dumpdata', 'sql', 'sqlall', 'sqlclear', 'sqlcustom', 'sqlindexes', 'sqlsequencereset', 'test'): try: from django.apps import apps app_configs = apps.get_app_configs() # Get the last part of the dotted path as the app name. options += [(app_config.label, 0) for app_config in app_configs] except ImportError: # Fail silently if DJANGO_SETTINGS_MODULE isn't set. The # user will find out once they execute the command. pass options += [(s_opt.get_opt_string(), s_opt.nargs) for s_opt in subcommand_cls.option_list] # filter out previously specified options from available options prev_opts = [x.split('=')[0] for x in cwords[1:cword - 1]] options = [opt for opt in options if opt[0] not in prev_opts] # filter options by current input options = sorted((k, v) for k, v in options if k.startswith(curr)) for option in options: opt_label = option[0] # append '=' to options which require args if option[1]: opt_label += '=' print(opt_label) sys.exit(1) def execute(self): """ Given the command-line arguments, this figures out which subcommand is being run, creates a parser appropriate to that command, and runs it. """ # Preprocess options to extract --settings and --pythonpath. # These options could affect the commands that are available, so they # must be processed early. parser = LaxOptionParser(usage="%prog subcommand [options] [args]", version=get_version(), option_list=BaseCommand.option_list) self.autocomplete() try: options, args = parser.parse_args(self.argv) handle_default_options(options) except: # Needed because parser.parse_args can raise SystemExit pass # Ignore any option errors at this point. try: subcommand = self.argv[1] except IndexError: subcommand = 'help' # Display help if no arguments were given. if subcommand == 'help': if len(args) <= 2: parser.print_lax_help() sys.stdout.write(self.main_help_text() + '\n') elif args[2] == '--commands': sys.stdout.write(self.main_help_text(commands_only=True) + '\n') else: self.fetch_command(args[2]).print_help(self.prog_name, args[2]) elif subcommand == 'version': sys.stdout.write(parser.get_version() + '\n') # Special-cases: We want 'django-admin.py --version' and # 'django-admin.py --help' to work, for backwards compatibility. elif self.argv[1:] == ['--version']: # LaxOptionParser already takes care of printing the version. pass elif self.argv[1:] in (['--help'], ['-h']): parser.print_lax_help() sys.stdout.write(self.main_help_text() + '\n') else: self.fetch_command(subcommand).run_from_argv(self.argv) def execute_from_command_line(argv=None): """ A simple method that runs a ManagementUtility. """ utility = ManagementUtility(argv) utility.execute()