from django.conf import settings from django.db import connection, router, transaction from django.db.backends import util from django.db.models import signals, get_model from django.db.models.fields import (AutoField, Field, IntegerField, PositiveIntegerField, PositiveSmallIntegerField, FieldDoesNotExist) from django.db.models.related import RelatedObject from django.db.models.query import QuerySet from django.db.models.query_utils import QueryWrapper from django.utils.encoding import smart_unicode from django.utils.translation import ugettext_lazy as _, string_concat, ungettext, ugettext from django.utils.functional import curry from django.core import exceptions from django import forms RECURSIVE_RELATIONSHIP_CONSTANT = 'self' pending_lookups = {} def add_lazy_relation(cls, field, relation, operation): """ Adds a lookup on ``cls`` when a related field is defined using a string, i.e.:: class MyModel(Model): fk = ForeignKey("AnotherModel") This string can be: * RECURSIVE_RELATIONSHIP_CONSTANT (i.e. "self") to indicate a recursive relation. * The name of a model (i.e "AnotherModel") to indicate another model in the same app. * An app-label and model name (i.e. "someapp.AnotherModel") to indicate another model in a different app. If the other model hasn't yet been loaded -- almost a given if you're using lazy relationships -- then the relation won't be set up until the class_prepared signal fires at the end of model initialization. operation is the work that must be performed once the relation can be resolved. """ # Check for recursive relations if relation == RECURSIVE_RELATIONSHIP_CONSTANT: app_label = cls._meta.app_label model_name = cls.__name__ else: # Look for an "app.Model" relation try: app_label, model_name = relation.split(".") except ValueError: # If we can't split, assume a model in current app app_label = cls._meta.app_label model_name = relation except AttributeError: # If it doesn't have a split it's actually a model class app_label = relation._meta.app_label model_name = relation._meta.object_name # Try to look up the related model, and if it's already loaded resolve the # string right away. If get_model returns None, it means that the related # model isn't loaded yet, so we need to pend the relation until the class # is prepared. model = get_model(app_label, model_name, False) if model: operation(field, model, cls) else: key = (app_label, model_name) value = (cls, field, operation) pending_lookups.setdefault(key, []).append(value) def do_pending_lookups(sender, **kwargs): """ Handle any pending relations to the sending model. Sent from class_prepared. """ key = (sender._meta.app_label, sender.__name__) for cls, field, operation in pending_lookups.pop(key, []): operation(field, sender, cls) signals.class_prepared.connect(do_pending_lookups) #HACK class RelatedField(object): def contribute_to_class(self, cls, name): sup = super(RelatedField, self) # Add an accessor to allow easy determination of the related query path for this field self.related_query_name = curry(self._get_related_query_name, cls._meta) if hasattr(sup, 'contribute_to_class'): sup.contribute_to_class(cls, name) if not cls._meta.abstract and self.rel.related_name: self.rel.related_name = self.rel.related_name % { 'class': cls.__name__.lower(), 'app_label': cls._meta.app_label.lower(), } other = self.rel.to if isinstance(other, basestring) or other._meta.pk is None: def resolve_related_class(field, model, cls): field.rel.to = model field.do_related_class(model, cls) add_lazy_relation(cls, self, other, resolve_related_class) else: self.do_related_class(other, cls) def set_attributes_from_rel(self): self.name = self.name or (self.rel.to._meta.object_name.lower() + '_' + self.rel.to._meta.pk.name) if self.verbose_name is None: self.verbose_name = self.rel.to._meta.verbose_name self.rel.field_name = self.rel.field_name or self.rel.to._meta.pk.name def do_related_class(self, other, cls): self.set_attributes_from_rel() self.related = RelatedObject(other, cls, self) if not cls._meta.abstract: self.contribute_to_related_class(other, self.related) def get_db_prep_lookup(self, lookup_type, value, connection, prepared=False): # If we are doing a lookup on a Related Field, we must be # comparing object instances. The value should be the PK of value, # not value itself. def pk_trace(value): # Value may be a primary key, or an object held in a relation. # If it is an object, then we need to get the primary key value for # that object. In certain conditions (especially one-to-one relations), # the primary key may itself be an object - so we need to keep drilling # down until we hit a value that can be used for a comparison. v, field = value, None try: while True: v, field = getattr(v, v._meta.pk.name), v._meta.pk except AttributeError: pass if field: if lookup_type in ('range', 'in'): v = [v] v = field.get_db_prep_lookup(lookup_type, v, connection=connection, prepared=prepared) if isinstance(v, list): v = v[0] return v if not prepared: value = self.get_prep_lookup(lookup_type, value) if hasattr(value, 'get_compiler'): value = value.get_compiler(connection=connection) if hasattr(value, 'as_sql') or hasattr(value, '_as_sql'): # If the value has a relabel_aliases method, it will need to # be invoked before the final SQL is evaluated if hasattr(value, 'relabel_aliases'): return value if hasattr(value, 'as_sql'): sql, params = value.as_sql() else: sql, params = value._as_sql(connection=connection) return QueryWrapper(('(%s)' % sql), params) # FIXME: lt and gt are explicitally allowed to make # get_(next/prev)_by_date work; other lookups are not allowed since that # gets messy pretty quick. This is a good candidate for some refactoring # in the future. if lookup_type in ['exact', 'gt', 'lt', 'gte', 'lte']: return [pk_trace(value)] if lookup_type in ('range', 'in'): return [pk_trace(v) for v in value] elif lookup_type == 'isnull': return [] raise TypeError("Related Field has invalid lookup: %s" % lookup_type) def _get_related_query_name(self, opts): # This method defines the name that can be used to identify this # related object in a table-spanning query. It uses the lower-cased # object_name by default, but this can be overridden with the # "related_name" option. return self.rel.related_name or opts.object_name.lower() class SingleRelatedObjectDescriptor(object): # This class provides the functionality that makes the related-object # managers available as attributes on a model class, for fields that have # a single "remote" value, on the class pointed to by a related field. # In the example "place.restaurant", the restaurant attribute is a # SingleRelatedObjectDescriptor instance. def __init__(self, related): self.related = related self.cache_name = related.get_cache_name() def __get__(self, instance, instance_type=None): if instance is None: return self try: return getattr(instance, self.cache_name) except AttributeError: params = {'%s__pk' % self.related.field.name: instance._get_pk_val()} db = router.db_for_read(instance.__class__, instance=instance) rel_obj = self.related.model._base_manager.using(db).get(**params) setattr(instance, self.cache_name, rel_obj) return rel_obj def __set__(self, instance, value): if instance is None: raise AttributeError("%s must be accessed via instance" % self.related.opts.object_name) # The similarity of the code below to the code in # ReverseSingleRelatedObjectDescriptor is annoying, but there's a bunch # of small differences that would make a common base class convoluted. # If null=True, we can assign null here, but otherwise the value needs # to be an instance of the related class. if value is None and self.related.field.null == False: raise ValueError('Cannot assign None: "%s.%s" does not allow null values.' % (instance._meta.object_name, self.related.get_accessor_name())) elif value is not None and not isinstance(value, self.related.model): raise ValueError('Cannot assign "%r": "%s.%s" must be a "%s" instance.' % (value, instance._meta.object_name, self.related.get_accessor_name(), self.related.opts.object_name)) elif value is not None: if instance._state.db is None: instance._state.db = router.db_for_write(instance.__class__, instance=value) elif value._state.db is None: value._state.db = router.db_for_write(value.__class__, instance=instance) elif value._state.db is not None and instance._state.db is not None: if not router.allow_relation(value, instance): raise ValueError('Cannot assign "%r": instance is on database "%s", value is on database "%s"' % (value, instance._state.db, value._state.db)) # Set the value of the related field to the value of the related object's related field setattr(value, self.related.field.attname, getattr(instance, self.related.field.rel.get_related_field().attname)) # Since we already know what the related object is, seed the related # object caches now, too. This avoids another db hit if you get the # object you just set. setattr(instance, self.cache_name, value) setattr(value, self.related.field.get_cache_name(), instance) class ReverseSingleRelatedObjectDescriptor(object): # This class provides the functionality that makes the related-object # managers available as attributes on a model class, for fields that have # a single "remote" value, on the class that defines the related field. # In the example "choice.poll", the poll attribute is a # ReverseSingleRelatedObjectDescriptor instance. def __init__(self, field_with_rel): self.field = field_with_rel def __get__(self, instance, instance_type=None): if instance is None: return self cache_name = self.field.get_cache_name() try: return getattr(instance, cache_name) except AttributeError: val = getattr(instance, self.field.attname) if val is None: # If NULL is an allowed value, return it. if self.field.null: return None raise self.field.rel.to.DoesNotExist other_field = self.field.rel.get_related_field() if other_field.rel: params = {'%s__pk' % self.field.rel.field_name: val} else: params = {'%s__exact' % self.field.rel.field_name: val} # If the related manager indicates that it should be used for # related fields, respect that. rel_mgr = self.field.rel.to._default_manager db = router.db_for_read(self.field.rel.to, instance=instance) if getattr(rel_mgr, 'use_for_related_fields', False): rel_obj = rel_mgr.using(db).get(**params) else: rel_obj = QuerySet(self.field.rel.to).using(db).get(**params) setattr(instance, cache_name, rel_obj) return rel_obj def __set__(self, instance, value): if instance is None: raise AttributeError("%s must be accessed via instance" % self._field.name) # If null=True, we can assign null here, but otherwise the value needs # to be an instance of the related class. if value is None and self.field.null == False: raise ValueError('Cannot assign None: "%s.%s" does not allow null values.' % (instance._meta.object_name, self.field.name)) elif value is not None and not isinstance(value, self.field.rel.to): raise ValueError('Cannot assign "%r": "%s.%s" must be a "%s" instance.' % (value, instance._meta.object_name, self.field.name, self.field.rel.to._meta.object_name)) elif value is not None: if instance._state.db is None: instance._state.db = router.db_for_write(instance.__class__, instance=value) elif value._state.db is None: value._state.db = router.db_for_write(value.__class__, instance=instance) elif value._state.db is not None and instance._state.db is not None: if not router.allow_relation(value, instance): raise ValueError('Cannot assign "%r": instance is on database "%s", value is on database "%s"' % (value, instance._state.db, value._state.db)) # If we're setting the value of a OneToOneField to None, we need to clear # out the cache on any old related object. Otherwise, deleting the # previously-related object will also cause this object to be deleted, # which is wrong. if value is None: # Look up the previously-related object, which may still be available # since we've not yet cleared out the related field. # Use the cache directly, instead of the accessor; if we haven't # populated the cache, then we don't care - we're only accessing # the object to invalidate the accessor cache, so there's no # need to populate the cache just to expire it again. related = getattr(instance, self.field.get_cache_name(), None) # If we've got an old related object, we need to clear out its # cache. This cache also might not exist if the related object # hasn't been accessed yet. if related: cache_name = self.field.related.get_cache_name() try: delattr(related, cache_name) except AttributeError: pass # Set the value of the related field try: val = getattr(value, self.field.rel.get_related_field().attname) except AttributeError: val = None setattr(instance, self.field.attname, val) # Since we already know what the related object is, seed the related # object cache now, too. This avoids another db hit if you get the # object you just set. setattr(instance, self.field.get_cache_name(), value) class ForeignRelatedObjectsDescriptor(object): # This class provides the functionality that makes the related-object # managers available as attributes on a model class, for fields that have # multiple "remote" values and have a ForeignKey pointed at them by # some other model. In the example "poll.choice_set", the choice_set # attribute is a ForeignRelatedObjectsDescriptor instance. def __init__(self, related): self.related = related # RelatedObject instance def __get__(self, instance, instance_type=None): if instance is None: return self return self.create_manager(instance, self.related.model._default_manager.__class__) def __set__(self, instance, value): if instance is None: raise AttributeError("Manager must be accessed via instance") manager = self.__get__(instance) # If the foreign key can support nulls, then completely clear the related set. # Otherwise, just move the named objects into the set. if self.related.field.null: manager.clear() manager.add(*value) def delete_manager(self, instance): """ Returns a queryset based on the related model's base manager (rather than the default manager, as returned by __get__). Used by Model.delete(). """ return self.create_manager(instance, self.related.model._base_manager.__class__) def create_manager(self, instance, superclass): """ Creates the managers used by other methods (__get__() and delete()). """ rel_field = self.related.field rel_model = self.related.model class RelatedManager(superclass): def get_query_set(self): db = router.db_for_read(rel_model, instance=instance) return superclass.get_query_set(self).using(db).filter(**(self.core_filters)) def add(self, *objs): for obj in objs: if not isinstance(obj, self.model): raise TypeError("'%s' instance expected" % self.model._meta.object_name) setattr(obj, rel_field.name, instance) obj.save() add.alters_data = True def create(self, **kwargs): kwargs.update({rel_field.name: instance}) return super(RelatedManager, self).create(**kwargs) create.alters_data = True def get_or_create(self, **kwargs): # Update kwargs with the related object that this # ForeignRelatedObjectsDescriptor knows about. kwargs.update({rel_field.name: instance}) db = router.db_for_write(rel_model, instance=instance) return super(RelatedManager, self).using(db).get_or_create(**kwargs) get_or_create.alters_data = True # remove() and clear() are only provided if the ForeignKey can have a value of null. if rel_field.null: def remove(self, *objs): val = getattr(instance, rel_field.rel.get_related_field().attname) for obj in objs: # Is obj actually part of this descriptor set? if getattr(obj, rel_field.attname) == val: setattr(obj, rel_field.name, None) obj.save() else: raise rel_field.rel.to.DoesNotExist("%r is not related to %r." % (obj, instance)) remove.alters_data = True def clear(self): for obj in self.all(): setattr(obj, rel_field.name, None) obj.save() clear.alters_data = True manager = RelatedManager() attname = rel_field.rel.get_related_field().name manager.core_filters = {'%s__%s' % (rel_field.name, attname): getattr(instance, attname)} manager.model = self.related.model return manager def create_many_related_manager(superclass, rel=False): """Creates a manager that subclasses 'superclass' (which is a Manager) and adds behavior for many-to-many related objects.""" through = rel.through class ManyRelatedManager(superclass): def __init__(self, model=None, core_filters=None, instance=None, symmetrical=None, join_table=None, source_field_name=None, target_field_name=None, reverse=False): super(ManyRelatedManager, self).__init__() self.core_filters = core_filters self.model = model self.symmetrical = symmetrical self.instance = instance self.source_field_name = source_field_name self.target_field_name = target_field_name self.through = through self._pk_val = self.instance.pk self.reverse = reverse if self._pk_val is None: raise ValueError("%r instance needs to have a primary key value before a many-to-many relationship can be used." % instance.__class__.__name__) def get_query_set(self): db = router.db_for_read(self.instance.__class__, instance=self.instance) return superclass.get_query_set(self).using(db)._next_is_sticky().filter(**(self.core_filters)) # If the ManyToMany relation has an intermediary model, # the add and remove methods do not exist. if rel.through._meta.auto_created: def add(self, *objs): self._add_items(self.source_field_name, self.target_field_name, *objs) # If this is a symmetrical m2m relation to self, add the mirror entry in the m2m table if self.symmetrical: self._add_items(self.target_field_name, self.source_field_name, *objs) add.alters_data = True def remove(self, *objs): self._remove_items(self.source_field_name, self.target_field_name, *objs) # If this is a symmetrical m2m relation to self, remove the mirror entry in the m2m table if self.symmetrical: self._remove_items(self.target_field_name, self.source_field_name, *objs) remove.alters_data = True def clear(self): self._clear_items(self.source_field_name) # If this is a symmetrical m2m relation to self, clear the mirror entry in the m2m table if self.symmetrical: self._clear_items(self.target_field_name) clear.alters_data = True def create(self, **kwargs): # This check needs to be done here, since we can't later remove this # from the method lookup table, as we do with add and remove. if not rel.through._meta.auto_created: opts = through._meta raise AttributeError("Cannot use create() on a ManyToManyField which specifies an intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name)) db = router.db_for_write(self.instance.__class__, instance=self.instance) new_obj = super(ManyRelatedManager, self).using(db).create(**kwargs) self.add(new_obj) return new_obj create.alters_data = True def get_or_create(self, **kwargs): db = router.db_for_write(self.instance.__class__, instance=self.instance) obj, created = \ super(ManyRelatedManager, self).using(db).get_or_create(**kwargs) # We only need to add() if created because if we got an object back # from get() then the relationship already exists. if created: self.add(obj) return obj, created get_or_create.alters_data = True def _add_items(self, source_field_name, target_field_name, *objs): # join_table: name of the m2m link table # source_field_name: the PK fieldname in join_table for the source object # target_field_name: the PK fieldname in join_table for the target object # *objs - objects to add. Either object instances, or primary keys of object instances. # If there aren't any objects, there is nothing to do. from django.db.models import Model if objs: new_ids = set() for obj in objs: if isinstance(obj, self.model): if not router.allow_relation(obj, self.instance): raise ValueError('Cannot add "%r": instance is on database "%s", value is on database "%s"' % (obj, self.instance._state.db, obj._state.db)) new_ids.add(obj.pk) elif isinstance(obj, Model): raise TypeError("'%s' instance expected" % self.model._meta.object_name) else: new_ids.add(obj) db = router.db_for_write(self.through.__class__, instance=self.instance) vals = self.through._default_manager.using(db).values_list(target_field_name, flat=True) vals = vals.filter(**{ source_field_name: self._pk_val, '%s__in' % target_field_name: new_ids, }) new_ids = new_ids - set(vals) # Add the ones that aren't there already for obj_id in new_ids: self.through._default_manager.using(db).create(**{ '%s_id' % source_field_name: self._pk_val, '%s_id' % target_field_name: obj_id, }) if self.reverse or source_field_name == self.source_field_name: # Don't send the signal when we are inserting the # duplicate data row for symmetrical reverse entries. signals.m2m_changed.send(sender=rel.through, action='add', instance=self.instance, reverse=self.reverse, model=self.model, pk_set=new_ids) def _remove_items(self, source_field_name, target_field_name, *objs): # source_col_name: the PK colname in join_table for the source object # target_col_name: the PK colname in join_table for the target object # *objs - objects to remove # If there aren't any objects, there is nothing to do. if objs: # Check that all the objects are of the right type old_ids = set() for obj in objs: if isinstance(obj, self.model): old_ids.add(obj.pk) else: old_ids.add(obj) # Remove the specified objects from the join table db = router.db_for_write(self.through.__class__, instance=self.instance) self.through._default_manager.using(db).filter(**{ source_field_name: self._pk_val, '%s__in' % target_field_name: old_ids }).delete() if self.reverse or source_field_name == self.source_field_name: # Don't send the signal when we are deleting the # duplicate data row for symmetrical reverse entries. signals.m2m_changed.send(sender=rel.through, action="remove", instance=self.instance, reverse=self.reverse, model=self.model, pk_set=old_ids) def _clear_items(self, source_field_name): # source_col_name: the PK colname in join_table for the source object if self.reverse or source_field_name == self.source_field_name: # Don't send the signal when we are clearing the # duplicate data rows for symmetrical reverse entries. signals.m2m_changed.send(sender=rel.through, action="clear", instance=self.instance, reverse=self.reverse, model=self.model, pk_set=None) db = router.db_for_write(self.through.__class__, instance=self.instance) self.through._default_manager.using(db).filter(**{ source_field_name: self._pk_val }).delete() return ManyRelatedManager class ManyRelatedObjectsDescriptor(object): # This class provides the functionality that makes the related-object # managers available as attributes on a model class, for fields that have # multiple "remote" values and have a ManyToManyField pointed at them by # some other model (rather than having a ManyToManyField themselves). # In the example "publication.article_set", the article_set attribute is a # ManyRelatedObjectsDescriptor instance. def __init__(self, related): self.related = related # RelatedObject instance def __get__(self, instance, instance_type=None): if instance is None: return self # Dynamically create a class that subclasses the related # model's default manager. rel_model = self.related.model superclass = rel_model._default_manager.__class__ RelatedManager = create_many_related_manager(superclass, self.related.field.rel) manager = RelatedManager( model=rel_model, core_filters={'%s__pk' % self.related.field.name: instance._get_pk_val()}, instance=instance, symmetrical=False, source_field_name=self.related.field.m2m_reverse_field_name(), target_field_name=self.related.field.m2m_field_name(), reverse=True ) return manager def __set__(self, instance, value): if instance is None: raise AttributeError("Manager must be accessed via instance") if not self.related.field.rel.through._meta.auto_created: opts = self.related.field.rel.through._meta raise AttributeError("Cannot set values on a ManyToManyField which specifies an intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name)) manager = self.__get__(instance) manager.clear() manager.add(*value) class ReverseManyRelatedObjectsDescriptor(object): # This class provides the functionality that makes the related-object # managers available as attributes on a model class, for fields that have # multiple "remote" values and have a ManyToManyField defined in their # model (rather than having another model pointed *at* them). # In the example "article.publications", the publications attribute is a # ReverseManyRelatedObjectsDescriptor instance. def __init__(self, m2m_field): self.field = m2m_field def _through(self): # through is provided so that you have easy access to the through # model (Book.authors.through) for inlines, etc. This is done as # a property to ensure that the fully resolved value is returned. return self.field.rel.through through = property(_through) def __get__(self, instance, instance_type=None): if instance is None: return self # Dynamically create a class that subclasses the related # model's default manager. rel_model=self.field.rel.to superclass = rel_model._default_manager.__class__ RelatedManager = create_many_related_manager(superclass, self.field.rel) manager = RelatedManager( model=rel_model, core_filters={'%s__pk' % self.field.related_query_name(): instance._get_pk_val()}, instance=instance, symmetrical=(self.field.rel.symmetrical and isinstance(instance, rel_model)), source_field_name=self.field.m2m_field_name(), target_field_name=self.field.m2m_reverse_field_name(), reverse=False ) return manager def __set__(self, instance, value): if instance is None: raise AttributeError("Manager must be accessed via instance") if not self.field.rel.through._meta.auto_created: opts = self.field.rel.through._meta raise AttributeError("Cannot set values on a ManyToManyField which specifies an intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name)) manager = self.__get__(instance) manager.clear() manager.add(*value) class ManyToOneRel(object): def __init__(self, to, field_name, related_name=None, limit_choices_to=None, lookup_overrides=None, parent_link=False): try: to._meta except AttributeError: # to._meta doesn't exist, so it must be RECURSIVE_RELATIONSHIP_CONSTANT assert isinstance(to, basestring), "'to' must be either a model, a model name or the string %r" % RECURSIVE_RELATIONSHIP_CONSTANT self.to, self.field_name = to, field_name self.related_name = related_name if limit_choices_to is None: limit_choices_to = {} self.limit_choices_to = limit_choices_to self.lookup_overrides = lookup_overrides or {} self.multiple = True self.parent_link = parent_link def is_hidden(self): "Should the related object be hidden?" return self.related_name and self.related_name[-1] == '+' def get_related_field(self): """ Returns the Field in the 'to' object to which this relationship is tied. """ data = self.to._meta.get_field_by_name(self.field_name) if not data[2]: raise FieldDoesNotExist("No related field named '%s'" % self.field_name) return data[0] class OneToOneRel(ManyToOneRel): def __init__(self, to, field_name, related_name=None, limit_choices_to=None, lookup_overrides=None, parent_link=False): super(OneToOneRel, self).__init__(to, field_name, related_name=related_name, limit_choices_to=limit_choices_to, lookup_overrides=lookup_overrides, parent_link=parent_link) self.multiple = False class ManyToManyRel(object): def __init__(self, to, related_name=None, limit_choices_to=None, symmetrical=True, through=None): self.to = to self.related_name = related_name if limit_choices_to is None: limit_choices_to = {} self.limit_choices_to = limit_choices_to self.symmetrical = symmetrical self.multiple = True self.through = through def is_hidden(self): "Should the related object be hidden?" return self.related_name and self.related_name[-1] == '+' def get_related_field(self): """ Returns the field in the to' object to which this relationship is tied (this is always the primary key on the target model). Provided for symmetry with ManyToOneRel. """ return self.to._meta.pk class ForeignKey(RelatedField, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('Model %(model)s with pk %(pk)r does not exist.') } description = _("Foreign Key (type determined by related field)") def __init__(self, to, to_field=None, rel_class=ManyToOneRel, **kwargs): try: to_name = to._meta.object_name.lower() except AttributeError: # to._meta doesn't exist, so it must be RECURSIVE_RELATIONSHIP_CONSTANT assert isinstance(to, basestring), "%s(%r) is invalid. First parameter to ForeignKey must be either a model, a model name, or the string %r" % (self.__class__.__name__, to, RECURSIVE_RELATIONSHIP_CONSTANT) else: assert not to._meta.abstract, "%s cannot define a relation with abstract class %s" % (self.__class__.__name__, to._meta.object_name) # For backwards compatibility purposes, we need to *try* and set # the to_field during FK construction. It won't be guaranteed to # be correct until contribute_to_class is called. Refs #12190. to_field = to_field or (to._meta.pk and to._meta.pk.name) kwargs['verbose_name'] = kwargs.get('verbose_name', None) kwargs['rel'] = rel_class(to, to_field, related_name=kwargs.pop('related_name', None), limit_choices_to=kwargs.pop('limit_choices_to', None), lookup_overrides=kwargs.pop('lookup_overrides', None), parent_link=kwargs.pop('parent_link', False)) Field.__init__(self, **kwargs) self.db_index = True def validate(self, value, model_instance): if self.rel.parent_link: return # Don't validate the field if a value wasn't supplied. This is # generally the case when saving new inlines in the admin. # See #12507. if value is None: return super(ForeignKey, self).validate(value, model_instance) if not value: return qs = self.rel.to._default_manager.filter(**{self.rel.field_name:value}) qs = qs.complex_filter(self.rel.limit_choices_to) if not qs.exists(): raise exceptions.ValidationError(self.error_messages['invalid'] % { 'model': self.rel.to._meta.verbose_name, 'pk': value}) def get_attname(self): return '%s_id' % self.name def get_validator_unique_lookup_type(self): return '%s__%s__exact' % (self.name, self.rel.get_related_field().name) def get_default(self): "Here we check if the default value is an object and return the to_field if so." field_default = super(ForeignKey, self).get_default() if isinstance(field_default, self.rel.to): return getattr(field_default, self.rel.get_related_field().attname) return field_default def get_db_prep_save(self, value, connection): if value == '' or value == None: return None else: return self.rel.get_related_field().get_db_prep_save(value, connection=connection) def value_to_string(self, obj): if not obj: # In required many-to-one fields with only one available choice, # select that one available choice. Note: For SelectFields # we have to check that the length of choices is *2*, not 1, # because SelectFields always have an initial "blank" value. if not self.blank and self.choices: choice_list = self.get_choices_default() if len(choice_list) == 2: return smart_unicode(choice_list[1][0]) return Field.value_to_string(self, obj) def contribute_to_class(self, cls, name): super(ForeignKey, self).contribute_to_class(cls, name) setattr(cls, self.name, ReverseSingleRelatedObjectDescriptor(self)) if isinstance(self.rel.to, basestring): target = self.rel.to else: target = self.rel.to._meta.db_table cls._meta.duplicate_targets[self.column] = (target, "o2m") def contribute_to_related_class(self, cls, related): # Internal FK's - i.e., those with a related name ending with '+' - # don't get a related descriptor. if not self.rel.is_hidden(): setattr(cls, related.get_accessor_name(), ForeignRelatedObjectsDescriptor(related)) if self.rel.field_name is None: self.rel.field_name = cls._meta.pk.name def formfield(self, **kwargs): db = kwargs.pop('using', None) defaults = { 'form_class': forms.ModelChoiceField, 'queryset': self.rel.to._default_manager.using(db).complex_filter(self.rel.limit_choices_to), 'to_field_name': self.rel.field_name, } defaults.update(kwargs) return super(ForeignKey, self).formfield(**defaults) def db_type(self, connection): # The database column type of a ForeignKey is the column type # of the field to which it points. An exception is if the ForeignKey # points to an AutoField/PositiveIntegerField/PositiveSmallIntegerField, # in which case the column type is simply that of an IntegerField. # If the database needs similar types for key fields however, the only # thing we can do is making AutoField an IntegerField. rel_field = self.rel.get_related_field() if (isinstance(rel_field, AutoField) or (not connection.features.related_fields_match_type and isinstance(rel_field, (PositiveIntegerField, PositiveSmallIntegerField)))): return IntegerField().db_type(connection=connection) return rel_field.db_type(connection=connection) class OneToOneField(ForeignKey): """ A OneToOneField is essentially the same as a ForeignKey, with the exception that always carries a "unique" constraint with it and the reverse relation always returns the object pointed to (since there will only ever be one), rather than returning a list. """ description = _("One-to-one relationship") def __init__(self, to, to_field=None, **kwargs): kwargs['unique'] = True super(OneToOneField, self).__init__(to, to_field, OneToOneRel, **kwargs) def contribute_to_related_class(self, cls, related): setattr(cls, related.get_accessor_name(), SingleRelatedObjectDescriptor(related)) def formfield(self, **kwargs): if self.rel.parent_link: return None return super(OneToOneField, self).formfield(**kwargs) def save_form_data(self, instance, data): if isinstance(data, self.rel.to): setattr(instance, self.name, data) else: setattr(instance, self.attname, data) def create_many_to_many_intermediary_model(field, klass): from django.db import models managed = True if isinstance(field.rel.to, basestring) and field.rel.to != RECURSIVE_RELATIONSHIP_CONSTANT: to_model = field.rel.to to = to_model.split('.')[-1] def set_managed(field, model, cls): field.rel.through._meta.managed = model._meta.managed or cls._meta.managed add_lazy_relation(klass, field, to_model, set_managed) elif isinstance(field.rel.to, basestring): to = klass._meta.object_name to_model = klass managed = klass._meta.managed else: to = field.rel.to._meta.object_name to_model = field.rel.to managed = klass._meta.managed or to_model._meta.managed name = '%s_%s' % (klass._meta.object_name, field.name) if field.rel.to == RECURSIVE_RELATIONSHIP_CONSTANT or to == klass._meta.object_name: from_ = 'from_%s' % to.lower() to = 'to_%s' % to.lower() else: from_ = klass._meta.object_name.lower() to = to.lower() meta = type('Meta', (object,), { 'db_table': field._get_m2m_db_table(klass._meta), 'managed': managed, 'auto_created': klass, 'app_label': klass._meta.app_label, 'unique_together': (from_, to) }) # Construct and return the new class. return type(name, (models.Model,), { 'Meta': meta, '__module__': klass.__module__, from_: models.ForeignKey(klass, related_name='%s+' % name), to: models.ForeignKey(to_model, related_name='%s+' % name) }) class ManyToManyField(RelatedField, Field): description = _("Many-to-many relationship") def __init__(self, to, **kwargs): try: assert not to._meta.abstract, "%s cannot define a relation with abstract class %s" % (self.__class__.__name__, to._meta.object_name) except AttributeError: # to._meta doesn't exist, so it must be RECURSIVE_RELATIONSHIP_CONSTANT assert isinstance(to, basestring), "%s(%r) is invalid. First parameter to ManyToManyField must be either a model, a model name, or the string %r" % (self.__class__.__name__, to, RECURSIVE_RELATIONSHIP_CONSTANT) kwargs['verbose_name'] = kwargs.get('verbose_name', None) kwargs['rel'] = ManyToManyRel(to, related_name=kwargs.pop('related_name', None), limit_choices_to=kwargs.pop('limit_choices_to', None), symmetrical=kwargs.pop('symmetrical', True), through=kwargs.pop('through', None)) self.db_table = kwargs.pop('db_table', None) if kwargs['rel'].through is not None: assert self.db_table is None, "Cannot specify a db_table if an intermediary model is used." Field.__init__(self, **kwargs) msg = _('Hold down "Control", or "Command" on a Mac, to select more than one.') self.help_text = string_concat(self.help_text, ' ', msg) def get_choices_default(self): return Field.get_choices(self, include_blank=False) def _get_m2m_db_table(self, opts): "Function that can be curried to provide the m2m table name for this relation" if self.rel.through is not None: return self.rel.through._meta.db_table elif self.db_table: return self.db_table else: return util.truncate_name('%s_%s' % (opts.db_table, self.name), connection.ops.max_name_length()) def _get_m2m_attr(self, related, attr): "Function that can be curried to provide the source accessor or DB column name for the m2m table" cache_attr = '_m2m_%s_cache' % attr if hasattr(self, cache_attr): return getattr(self, cache_attr) for f in self.rel.through._meta.fields: if hasattr(f,'rel') and f.rel and f.rel.to == related.model: setattr(self, cache_attr, getattr(f, attr)) return getattr(self, cache_attr) def _get_m2m_reverse_attr(self, related, attr): "Function that can be curried to provide the related accessor or DB column name for the m2m table" cache_attr = '_m2m_reverse_%s_cache' % attr if hasattr(self, cache_attr): return getattr(self, cache_attr) found = False for f in self.rel.through._meta.fields: if hasattr(f,'rel') and f.rel and f.rel.to == related.parent_model: if related.model == related.parent_model: # If this is an m2m-intermediate to self, # the first foreign key you find will be # the source column. Keep searching for # the second foreign key. if found: setattr(self, cache_attr, getattr(f, attr)) break else: found = True else: setattr(self, cache_attr, getattr(f, attr)) break return getattr(self, cache_attr) def isValidIDList(self, field_data, all_data): "Validates that the value is a valid list of foreign keys" mod = self.rel.to try: pks = map(int, field_data.split(',')) except ValueError: # the CommaSeparatedIntegerField validator will catch this error return objects = mod._default_manager.in_bulk(pks) if len(objects) != len(pks): badkeys = [k for k in pks if k not in objects] raise exceptions.ValidationError( ungettext("Please enter valid %(self)s IDs. The value %(value)r is invalid.", "Please enter valid %(self)s IDs. The values %(value)r are invalid.", len(badkeys)) % { 'self': self.verbose_name, 'value': len(badkeys) == 1 and badkeys[0] or tuple(badkeys), }) def value_to_string(self, obj): data = '' if obj: qs = getattr(obj, self.name).all() data = [instance._get_pk_val() for instance in qs] else: # In required many-to-many fields with only one available choice, # select that one available choice. if not self.blank: choices_list = self.get_choices_default() if len(choices_list) == 1: data = [choices_list[0][0]] return smart_unicode(data) def contribute_to_class(self, cls, name): # To support multiple relations to self, it's useful to have a non-None # related name on symmetrical relations for internal reasons. The # concept doesn't make a lot of sense externally ("you want me to # specify *what* on my non-reversible relation?!"), so we set it up # automatically. The funky name reduces the chance of an accidental # clash. if self.rel.symmetrical and (self.rel.to == "self" or self.rel.to == cls._meta.object_name): self.rel.related_name = "%s_rel_+" % name super(ManyToManyField, self).contribute_to_class(cls, name) # The intermediate m2m model is not auto created if: # 1) There is a manually specified intermediate, or # 2) The class owning the m2m field is abstract. if not self.rel.through and not cls._meta.abstract: self.rel.through = create_many_to_many_intermediary_model(self, cls) # Add the descriptor for the m2m relation setattr(cls, self.name, ReverseManyRelatedObjectsDescriptor(self)) # Set up the accessor for the m2m table name for the relation self.m2m_db_table = curry(self._get_m2m_db_table, cls._meta) # Populate some necessary rel arguments so that cross-app relations # work correctly. if isinstance(self.rel.through, basestring): def resolve_through_model(field, model, cls): field.rel.through = model add_lazy_relation(cls, self, self.rel.through, resolve_through_model) if isinstance(self.rel.to, basestring): target = self.rel.to else: target = self.rel.to._meta.db_table cls._meta.duplicate_targets[self.column] = (target, "m2m") def contribute_to_related_class(self, cls, related): # Internal M2Ms (i.e., those with a related name ending with '+') # don't get a related descriptor. if not self.rel.is_hidden(): setattr(cls, related.get_accessor_name(), ManyRelatedObjectsDescriptor(related)) # Set up the accessors for the column names on the m2m table self.m2m_column_name = curry(self._get_m2m_attr, related, 'column') self.m2m_reverse_name = curry(self._get_m2m_reverse_attr, related, 'column') self.m2m_field_name = curry(self._get_m2m_attr, related, 'name') self.m2m_reverse_field_name = curry(self._get_m2m_reverse_attr, related, 'name') def set_attributes_from_rel(self): pass def value_from_object(self, obj): "Returns the value of this field in the given model instance." return getattr(obj, self.attname).all() def save_form_data(self, instance, data): setattr(instance, self.attname, data) def formfield(self, **kwargs): db = kwargs.pop('using', None) defaults = { 'form_class': forms.ModelMultipleChoiceField, 'queryset': self.rel.to._default_manager.using(db).complex_filter(self.rel.limit_choices_to) } defaults.update(kwargs) # If initial is passed in, it's a list of related objects, but the # MultipleChoiceField takes a list of IDs. if defaults.get('initial') is not None: initial = defaults['initial'] if callable(initial): initial = initial() defaults['initial'] = [i._get_pk_val() for i in initial] return super(ManyToManyField, self).formfield(**defaults) def db_type(self, connection): # A ManyToManyField is not represented by a single column, # so return None. return None