import copy import datetime from django.core.exceptions import FieldError from django.db.backends import utils as backend_utils from django.db.models import fields from django.db.models.constants import LOOKUP_SEP from django.db.models.query_utils import refs_aggregate from django.utils.functional import cached_property class CombinableMixin(object): """ Provides the ability to combine one or two objects with some connector. For example F('foo') + F('bar'). """ # Arithmetic connectors ADD = '+' SUB = '-' MUL = '*' DIV = '/' POW = '^' # The following is a quoted % operator - it is quoted because it can be # used in strings that also have parameter substitution. MOD = '%%' # Bitwise operators - note that these are generated by .bitand() # and .bitor(), the '&' and '|' are reserved for boolean operator # usage. BITAND = '&' BITOR = '|' def _combine(self, other, connector, reversed, node=None): if isinstance(other, datetime.timedelta): return DateModifierNode(self, connector, other) if not hasattr(other, 'resolve_expression'): # everything must be resolvable to an expression other = Value(other) if reversed: return Expression(other, connector, self) return Expression(self, connector, other) ############# # OPERATORS # ############# def __add__(self, other): return self._combine(other, self.ADD, False) def __sub__(self, other): return self._combine(other, self.SUB, False) def __mul__(self, other): return self._combine(other, self.MUL, False) def __truediv__(self, other): return self._combine(other, self.DIV, False) def __div__(self, other): # Python 2 compatibility return type(self).__truediv__(self, other) def __mod__(self, other): return self._combine(other, self.MOD, False) def __pow__(self, other): return self._combine(other, self.POW, False) def __and__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) def bitand(self, other): return self._combine(other, self.BITAND, False) def __or__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) def bitor(self, other): return self._combine(other, self.BITOR, False) def __radd__(self, other): return self._combine(other, self.ADD, True) def __rsub__(self, other): return self._combine(other, self.SUB, True) def __rmul__(self, other): return self._combine(other, self.MUL, True) def __rtruediv__(self, other): return self._combine(other, self.DIV, True) def __rdiv__(self, other): # Python 2 compatibility return type(self).__rtruediv__(self, other) def __rmod__(self, other): return self._combine(other, self.MOD, True) def __rpow__(self, other): return self._combine(other, self.POW, True) def __rand__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) def __ror__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) class ExpressionNode(CombinableMixin): """ Base class for all query expressions. """ # aggregate specific fields is_summary = False def __init__(self, output_field=None): self._output_field = output_field def get_source_expressions(self): return [] def set_source_expressions(self, exprs): assert len(exprs) == 0 def as_sql(self, compiler, connection): """ Responsible for returning a (sql, [params]) tuple to be included in the current query. Different backends can provide their own implementation, by providing an `as_{vendor}` method and patching the Expression: ``` def override_as_sql(self, compiler, connection): # custom logic return super(ExpressionNode, self).as_sql(compiler, connection) setattr(ExpressionNode, 'as_' + connection.vendor, override_as_sql) ``` Arguments: * compiler: the query compiler responsible for generating the query. Must have a compile method, returning a (sql, [params]) tuple. Calling compiler(value) will return a quoted `value`. * connection: the database connection used for the current query. Returns: (sql, params) Where `sql` is a string containing ordered sql parameters to be replaced with the elements of the list `params`. """ raise NotImplementedError("Subclasses must implement as_sql()") @cached_property def contains_aggregate(self): for expr in self.get_source_expressions(): if expr and expr.contains_aggregate: return True return False def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False): """ Provides the chance to do any preprocessing or validation before being added to the query. Arguments: * query: the backend query implementation * allow_joins: boolean allowing or denying use of joins in this query * reuse: a set of reusable joins for multijoins * summarize: a terminal aggregate clause Returns: an ExpressionNode to be added to the query. """ c = self.copy() c.is_summary = summarize return c def _prepare(self): """ Hook used by Field.get_prep_lookup() to do custom preparation. """ return self @property def field(self): return self.output_field @cached_property def output_field(self): """ Returns the output type of this expressions. """ if self._output_field_or_none is None: raise FieldError("Cannot resolve expression type, unknown output_field") return self._output_field_or_none @cached_property def _output_field_or_none(self): """ Returns the output field of this expression, or None if no output type can be resolved. Note that the 'output_field' property will raise FieldError if no type can be resolved, but this attribute allows for None values. """ if self._output_field is None: self._resolve_output_field() return self._output_field def _resolve_output_field(self): """ Attempts to infer the output type of the expression. If the output fields of all source fields match then we can simply infer the same type here. """ if self._output_field is None: sources = self.get_source_fields() num_sources = len(sources) if num_sources == 0: self._output_field = None else: self._output_field = sources[0] for source in sources: if source is not None and not isinstance(self._output_field, source.__class__): raise FieldError( "Expression contains mixed types. You must set output_field") def convert_value(self, value, connection): """ Expressions provide their own converters because users have the option of manually specifying the output_field which may be a different type from the one the database returns. """ field = self.output_field internal_type = field.get_internal_type() if value is None: return value elif internal_type == 'FloatField': return float(value) elif internal_type.endswith('IntegerField'): return int(value) elif internal_type == 'DecimalField': return backend_utils.typecast_decimal(field.format_number(value)) return value def get_lookup(self, lookup): return self.output_field.get_lookup(lookup) def get_transform(self, name): return self.output_field.get_transform(name) def relabeled_clone(self, change_map): clone = self.copy() clone.set_source_expressions( [e.relabeled_clone(change_map) for e in self.get_source_expressions()]) return clone def copy(self): c = copy.copy(self) c.copied = True return c def refs_aggregate(self, existing_aggregates): """ Does this expression contain a reference to some of the existing aggregates? If so, returns the aggregate and also the lookup parts that *weren't* found. So, if exsiting_aggregates = {'max_id': Max('id')} self.name = 'max_id' queryset.filter(max_id__range=[10,100]) then this method will return Max('id') and those parts of the name that weren't found. In this case `max_id` is found and the range portion is returned as ('range',). """ for node in self.get_source_expressions(): agg, lookup = node.refs_aggregate(existing_aggregates) if agg: return agg, lookup return False, () def refs_field(self, aggregate_types, field_types): """ Helper method for check_aggregate_support on backends """ return any( node.refs_field(aggregate_types, field_types) for node in self.get_source_expressions()) def prepare_database_save(self, field): return self def get_group_by_cols(self): cols = [] for source in self.get_source_expressions(): cols.extend(source.get_group_by_cols()) return cols def get_source_fields(self): """ Returns the underlying field types used by this aggregate. """ return [e._output_field_or_none for e in self.get_source_expressions()] class Expression(ExpressionNode): def __init__(self, lhs, connector, rhs, output_field=None): super(Expression, self).__init__(output_field=output_field) self.connector = connector self.lhs = lhs self.rhs = rhs def get_source_expressions(self): return [self.lhs, self.rhs] def set_source_expressions(self, exprs): self.lhs, self.rhs = exprs def as_sql(self, compiler, connection): expressions = [] expression_params = [] sql, params = compiler.compile(self.lhs) expressions.append(sql) expression_params.extend(params) sql, params = compiler.compile(self.rhs) expressions.append(sql) expression_params.extend(params) # order of precedence expression_wrapper = '(%s)' sql = connection.ops.combine_expression(self.connector, expressions) return expression_wrapper % sql, expression_params def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False): c = self.copy() c.is_summary = summarize c.lhs = c.lhs.resolve_expression(query, allow_joins, reuse, summarize) c.rhs = c.rhs.resolve_expression(query, allow_joins, reuse, summarize) return c class DateModifierNode(Expression): """ Node that implements the following syntax: filter(end_date__gt=F('start_date') + datetime.timedelta(days=3, seconds=200)) which translates into: POSTGRES: WHERE end_date > (start_date + INTERVAL '3 days 200 seconds') MYSQL: WHERE end_date > (start_date + INTERVAL '3 0:0:200:0' DAY_MICROSECOND) ORACLE: WHERE end_date > (start_date + INTERVAL '3 00:03:20.000000' DAY(1) TO SECOND(6)) SQLITE: WHERE end_date > django_format_dtdelta(start_date, "+" "3", "200", "0") (A custom function is used in order to preserve six digits of fractional second information on sqlite, and to format both date and datetime values.) Note that microsecond comparisons are not well supported with MySQL, since MySQL does not store microsecond information. Only adding and subtracting timedeltas is supported, attempts to use other operations raise a TypeError. """ def __init__(self, lhs, connector, rhs): if not isinstance(rhs, datetime.timedelta): raise TypeError('rhs must be a timedelta.') if connector not in (self.ADD, self.SUB): raise TypeError('Connector must be + or -, not %s' % connector) super(DateModifierNode, self).__init__(lhs, connector, Value(rhs)) def as_sql(self, compiler, connection): timedelta = self.rhs.value sql, params = compiler.compile(self.lhs) if (timedelta.days == timedelta.seconds == timedelta.microseconds == 0): return sql, params return connection.ops.date_interval_sql(sql, self.connector, timedelta), params class F(CombinableMixin): """ An object capable of resolving references to existing query objects. """ def __init__(self, name): """ Arguments: * name: the name of the field this expression references """ self.name = name def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False): return query.resolve_ref(self.name, allow_joins, reuse, summarize) def refs_aggregate(self, existing_aggregates): return refs_aggregate(self.name.split(LOOKUP_SEP), existing_aggregates) class Func(ExpressionNode): """ A SQL function call. """ function = None template = '%(function)s(%(expressions)s)' arg_joiner = ', ' def __init__(self, *expressions, **extra): output_field = extra.pop('output_field', None) super(Func, self).__init__(output_field=output_field) self.source_expressions = self._parse_expressions(*expressions) self.extra = extra def get_source_expressions(self): return self.source_expressions def set_source_expressions(self, exprs): self.source_expressions = exprs def _parse_expressions(self, *expressions): return [ arg if hasattr(arg, 'resolve_expression') else F(arg) for arg in expressions ] def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False): c = self.copy() c.is_summary = summarize for pos, arg in enumerate(c.source_expressions): c.source_expressions[pos] = arg.resolve_expression(query, allow_joins, reuse, summarize) return c def as_sql(self, compiler, connection, function=None, template=None): sql_parts = [] params = [] for arg in self.source_expressions: arg_sql, arg_params = compiler.compile(arg) sql_parts.append(arg_sql) params.extend(arg_params) if function is None: self.extra['function'] = self.extra.get('function', self.function) else: self.extra['function'] = function self.extra['expressions'] = self.extra['field'] = self.arg_joiner.join(sql_parts) template = template or self.extra.get('template', self.template) return template % self.extra, params def copy(self): copy = super(Func, self).copy() copy.source_expressions = self.source_expressions[:] copy.extra = self.extra.copy() return copy class Value(ExpressionNode): """ Represents a wrapped value as a node within an expression """ def __init__(self, value, output_field=None): """ Arguments: * value: the value this expression represents. The value will be added into the sql parameter list and properly quoted. * output_field: an instance of the model field type that this expression will return, such as IntegerField() or CharField(). """ super(Value, self).__init__(output_field=output_field) self.value = value def as_sql(self, compiler, connection): return '%s', [self.value] class Col(ExpressionNode): def __init__(self, alias, target, source=None): if source is None: source = target super(Col, self).__init__(output_field=source) self.alias, self.target = alias, target def as_sql(self, compiler, connection): qn = compiler.quote_name_unless_alias return "%s.%s" % (qn(self.alias), qn(self.target.column)), [] def relabeled_clone(self, relabels): return self.__class__(relabels.get(self.alias, self.alias), self.target, self.output_field) def get_group_by_cols(self): return [(self.alias, self.target.column)] class Ref(ExpressionNode): """ Reference to column alias of the query. For example, Ref('sum_cost') in qs.annotate(sum_cost=Sum('cost')) query. """ def __init__(self, refs, source): super(Ref, self).__init__() self.source = source self.refs = refs def get_source_expressions(self): return [self.source] def set_source_expressions(self, exprs): self.source, = exprs def relabeled_clone(self, relabels): return self def as_sql(self, compiler, connection): return "%s" % compiler.quote_name_unless_alias(self.refs), [] def get_group_by_cols(self): return [(None, self.refs)] class Date(ExpressionNode): """ Add a date selection column. """ def __init__(self, col, lookup_type): super(Date, self).__init__(output_field=fields.DateField()) self.col = col self.lookup_type = lookup_type def get_source_expressions(self): return [self.col] def set_source_expressions(self, exprs): self.col, = self.exprs def as_sql(self, compiler, connection): sql, params = self.col.as_sql(compiler, connection) assert not(params) return connection.ops.date_trunc_sql(self.lookup_type, sql), [] class DateTime(ExpressionNode): """ Add a datetime selection column. """ def __init__(self, col, lookup_type, tzname): super(DateTime, self).__init__(output_field=fields.DateTimeField()) self.col = col self.lookup_type = lookup_type self.tzname = tzname def get_source_expressions(self): return [self.col] def set_source_expressions(self, exprs): self.col, = exprs def as_sql(self, compiler, connection): sql, params = self.col.as_sql(compiler, connection) assert not(params) return connection.ops.datetime_trunc_sql(self.lookup_type, sql, self.tzname)