""" Create SQL statements for QuerySets. The code in here encapsulates all of the SQL construction so that QuerySets themselves do not have to (and could be backed by things other than SQL databases). The abstraction barrier only works one way: this module has to know all about the internals of models in order to get the information it needs. """ from copy import deepcopy from django.utils.tree import Node from django.utils.datastructures import SortedDict from django.utils.encoding import force_unicode from django.db import connection from django.db.models import signals from django.db.models.fields import FieldDoesNotExist from django.db.models.query_utils import select_related_descend from django.db.models.sql.where import WhereNode, EverythingNode, AND, OR from django.db.models.sql.datastructures import Count from django.core.exceptions import FieldError from datastructures import EmptyResultSet, Empty, MultiJoin from constants import * try: set except NameError: from sets import Set as set # Python 2.3 fallback __all__ = ['Query'] class Query(object): """ A single SQL query. """ # SQL join types. These are part of the class because their string forms # vary from database to database and can be customised by a subclass. INNER = 'INNER JOIN' LOUTER = 'LEFT OUTER JOIN' alias_prefix = 'T' query_terms = QUERY_TERMS def __init__(self, model, connection, where=WhereNode): self.model = model self.connection = connection self.alias_refcount = {} self.alias_map = {} # Maps alias to join information self.table_map = {} # Maps table names to list of aliases. self.join_map = {} self.rev_join_map = {} # Reverse of join_map. self.quote_cache = {} self.default_cols = True self.default_ordering = True self.standard_ordering = True self.ordering_aliases = [] self.start_meta = None self.select_fields = [] self.related_select_fields = [] self.dupe_avoidance = {} self.used_aliases = set() self.filter_is_sticky = False # SQL-related attributes self.select = [] self.tables = [] # Aliases in the order they are created. self.where = where() self.where_class = where self.group_by = [] self.having = [] self.order_by = [] self.low_mark, self.high_mark = 0, None # Used for offset/limit self.distinct = False self.select_related = False self.related_select_cols = [] # Arbitrary maximum limit for select_related. Prevents infinite # recursion. Can be changed by the depth parameter to select_related(). self.max_depth = 5 # These are for extensions. The contents are more or less appended # verbatim to the appropriate clause. self.extra_select = SortedDict() # Maps col_alias -> (col_sql, params). self.extra_tables = () self.extra_where = () self.extra_params = () self.extra_order_by = () def __str__(self): """ Returns the query as a string of SQL with the parameter values substituted in. Parameter values won't necessarily be quoted correctly, since that is done by the database interface at execution time. """ sql, params = self.as_sql() return sql % params def __deepcopy__(self, memo): result= self.clone() memo[id(self)] = result return result def __getstate__(self): """ Pickling support. """ obj_dict = self.__dict__.copy() obj_dict['related_select_fields'] = [] obj_dict['related_select_cols'] = [] del obj_dict['connection'] return obj_dict def __setstate__(self, obj_dict): """ Unpickling support. """ self.__dict__.update(obj_dict) # XXX: Need a better solution for this when multi-db stuff is # supported. It's the only class-reference to the module-level # connection variable. self.connection = connection def get_meta(self): """ Returns the Options instance (the model._meta) from which to start processing. Normally, this is self.model._meta, but it can change. """ if self.start_meta: return self.start_meta return self.model._meta def quote_name_unless_alias(self, name): """ A wrapper around connection.ops.quote_name that doesn't quote aliases for table names. This avoids problems with some SQL dialects that treat quoted strings specially (e.g. PostgreSQL). """ if name in self.quote_cache: return self.quote_cache[name] if ((name in self.alias_map and name not in self.table_map) or name in self.extra_select): self.quote_cache[name] = name return name r = self.connection.ops.quote_name(name) self.quote_cache[name] = r return r def clone(self, klass=None, **kwargs): """ Creates a copy of the current instance. The 'kwargs' parameter can be used by clients to update attributes after copying has taken place. """ obj = Empty() obj.__class__ = klass or self.__class__ obj.model = self.model obj.connection = self.connection obj.alias_refcount = self.alias_refcount.copy() obj.alias_map = self.alias_map.copy() obj.table_map = self.table_map.copy() obj.join_map = self.join_map.copy() obj.rev_join_map = self.rev_join_map.copy() obj.quote_cache = {} obj.default_cols = self.default_cols obj.default_ordering = self.default_ordering obj.standard_ordering = self.standard_ordering obj.ordering_aliases = [] obj.start_meta = self.start_meta obj.select_fields = self.select_fields[:] obj.related_select_fields = self.related_select_fields[:] obj.dupe_avoidance = self.dupe_avoidance.copy() obj.select = self.select[:] obj.tables = self.tables[:] obj.where = deepcopy(self.where) obj.where_class = self.where_class obj.group_by = self.group_by[:] obj.having = self.having[:] obj.order_by = self.order_by[:] obj.low_mark, obj.high_mark = self.low_mark, self.high_mark obj.distinct = self.distinct obj.select_related = self.select_related obj.related_select_cols = [] obj.max_depth = self.max_depth obj.extra_select = self.extra_select.copy() obj.extra_tables = self.extra_tables obj.extra_where = self.extra_where obj.extra_params = self.extra_params obj.extra_order_by = self.extra_order_by if self.filter_is_sticky and self.used_aliases: obj.used_aliases = self.used_aliases.copy() else: obj.used_aliases = set() obj.filter_is_sticky = False obj.__dict__.update(kwargs) if hasattr(obj, '_setup_query'): obj._setup_query() return obj def results_iter(self): """ Returns an iterator over the results from executing this query. """ resolve_columns = hasattr(self, 'resolve_columns') fields = None for rows in self.execute_sql(MULTI): for row in rows: if resolve_columns: if fields is None: # We only set this up here because # related_select_fields isn't populated until # execute_sql() has been called. if self.select_fields: fields = self.select_fields + self.related_select_fields else: fields = self.model._meta.fields row = self.resolve_columns(row, fields) yield row def get_count(self): """ Performs a COUNT() query using the current filter constraints. """ from subqueries import CountQuery obj = self.clone() obj.clear_ordering(True) obj.clear_limits() obj.select_related = False obj.related_select_cols = [] obj.related_select_fields = [] if len(obj.select) > 1: obj = self.clone(CountQuery, _query=obj, where=self.where_class(), distinct=False) obj.select = [] obj.extra_select = SortedDict() obj.add_count_column() data = obj.execute_sql(SINGLE) if not data: return 0 number = data[0] # Apply offset and limit constraints manually, since using LIMIT/OFFSET # in SQL (in variants that provide them) doesn't change the COUNT # output. number = max(0, number - self.low_mark) if self.high_mark: number = min(number, self.high_mark - self.low_mark) return number def as_sql(self, with_limits=True, with_col_aliases=False): """ Creates the SQL for this query. Returns the SQL string and list of parameters. If 'with_limits' is False, any limit/offset information is not included in the query. """ self.pre_sql_setup() out_cols = self.get_columns(with_col_aliases) ordering = self.get_ordering() # This must come after 'select' and 'ordering' -- see docstring of # get_from_clause() for details. from_, f_params = self.get_from_clause() where, w_params = self.where.as_sql(qn=self.quote_name_unless_alias) params = [] for val in self.extra_select.itervalues(): params.extend(val[1]) result = ['SELECT'] if self.distinct: result.append('DISTINCT') result.append(', '.join(out_cols + self.ordering_aliases)) result.append('FROM') result.extend(from_) params.extend(f_params) if where: result.append('WHERE %s' % where) params.extend(w_params) if self.extra_where: if not where: result.append('WHERE') else: result.append('AND') result.append(' AND '.join(self.extra_where)) if self.group_by: grouping = self.get_grouping() result.append('GROUP BY %s' % ', '.join(grouping)) if self.having: having, h_params = self.get_having() result.append('HAVING %s' % ', '.join(having)) params.extend(h_params) if ordering: result.append('ORDER BY %s' % ', '.join(ordering)) if with_limits: if self.high_mark is not None: result.append('LIMIT %d' % (self.high_mark - self.low_mark)) if self.low_mark: if self.high_mark is None: val = self.connection.ops.no_limit_value() if val: result.append('LIMIT %d' % val) result.append('OFFSET %d' % self.low_mark) params.extend(self.extra_params) return ' '.join(result), tuple(params) def combine(self, rhs, connector): """ Merge the 'rhs' query into the current one (with any 'rhs' effects being applied *after* (that is, "to the right of") anything in the current query. 'rhs' is not modified during a call to this function. The 'connector' parameter describes how to connect filters from the 'rhs' query. """ assert self.model == rhs.model, \ "Cannot combine queries on two different base models." assert self.can_filter(), \ "Cannot combine queries once a slice has been taken." assert self.distinct == rhs.distinct, \ "Cannot combine a unique query with a non-unique query." # Work out how to relabel the rhs aliases, if necessary. change_map = {} used = set() conjunction = (connector == AND) first = True for alias in rhs.tables: if not rhs.alias_refcount[alias]: # An unused alias. continue promote = (rhs.alias_map[alias][JOIN_TYPE] == self.LOUTER) new_alias = self.join(rhs.rev_join_map[alias], (conjunction and not first), used, promote, not conjunction) used.add(new_alias) change_map[alias] = new_alias first = False # So that we don't exclude valid results in an "or" query combination, # the first join that is exclusive to the lhs (self) must be converted # to an outer join. if not conjunction: for alias in self.tables[1:]: if self.alias_refcount[alias] == 1: self.promote_alias(alias, True) break # Now relabel a copy of the rhs where-clause and add it to the current # one. if rhs.where: w = deepcopy(rhs.where) w.relabel_aliases(change_map) if not self.where: # Since 'self' matches everything, add an explicit "include # everything" where-constraint so that connections between the # where clauses won't exclude valid results. self.where.add(EverythingNode(), AND) elif self.where: # rhs has an empty where clause. w = self.where_class() w.add(EverythingNode(), AND) else: w = self.where_class() self.where.add(w, connector) # Selection columns and extra extensions are those provided by 'rhs'. self.select = [] for col in rhs.select: if isinstance(col, (list, tuple)): self.select.append((change_map.get(col[0], col[0]), col[1])) else: item = deepcopy(col) item.relabel_aliases(change_map) self.select.append(item) self.select_fields = rhs.select_fields[:] if connector == OR: # It would be nice to be able to handle this, but the queries don't # really make sense (or return consistent value sets). Not worth # the extra complexity when you can write a real query instead. if self.extra_select and rhs.extra_select: raise ValueError("When merging querysets using 'or', you " "cannot have extra(select=...) on both sides.") if self.extra_where and rhs.extra_where: raise ValueError("When merging querysets using 'or', you " "cannot have extra(where=...) on both sides.") self.extra_select.update(rhs.extra_select) self.extra_tables += rhs.extra_tables self.extra_where += rhs.extra_where self.extra_params += rhs.extra_params # Ordering uses the 'rhs' ordering, unless it has none, in which case # the current ordering is used. self.order_by = rhs.order_by and rhs.order_by[:] or self.order_by self.extra_order_by = rhs.extra_order_by or self.extra_order_by def pre_sql_setup(self): """ Does any necessary class setup immediately prior to producing SQL. This is for things that can't necessarily be done in __init__ because we might not have all the pieces in place at that time. """ if not self.tables: self.join((None, self.model._meta.db_table, None, None)) if self.select_related and not self.related_select_cols: self.fill_related_selections() def get_columns(self, with_aliases=False): """ Return the list of columns to use in the select statement. If no columns have been specified, returns all columns relating to fields in the model. If 'with_aliases' is true, any column names that are duplicated (without the table names) are given unique aliases. This is needed in some cases to avoid ambiguitity with nested queries. """ qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name result = ['(%s) AS %s' % (col[0], qn2(alias)) for alias, col in self.extra_select.iteritems()] aliases = set(self.extra_select.keys()) if with_aliases: col_aliases = aliases.copy() else: col_aliases = set() if self.select: for col in self.select: if isinstance(col, (list, tuple)): r = '%s.%s' % (qn(col[0]), qn(col[1])) if with_aliases and col[1] in col_aliases: c_alias = 'Col%d' % len(col_aliases) result.append('%s AS %s' % (r, c_alias)) aliases.add(c_alias) col_aliases.add(c_alias) else: result.append(r) aliases.add(r) col_aliases.add(col[1]) else: result.append(col.as_sql(quote_func=qn)) if hasattr(col, 'alias'): aliases.add(col.alias) col_aliases.add(col.alias) elif self.default_cols: cols, new_aliases = self.get_default_columns(with_aliases, col_aliases) result.extend(cols) aliases.update(new_aliases) for table, col in self.related_select_cols: r = '%s.%s' % (qn(table), qn(col)) if with_aliases and col in col_aliases: c_alias = 'Col%d' % len(col_aliases) result.append('%s AS %s' % (r, c_alias)) aliases.add(c_alias) col_aliases.add(c_alias) else: result.append(r) aliases.add(r) col_aliases.add(col) self._select_aliases = aliases return result def get_default_columns(self, with_aliases=False, col_aliases=None, start_alias=None, opts=None, as_pairs=False): """ Computes the default columns for selecting every field in the base model. Returns a list of strings, quoted appropriately for use in SQL directly, as well as a set of aliases used in the select statement (if 'as_pairs' is True, returns a list of (alias, col_name) pairs instead of strings as the first component and None as the second component). """ result = [] if opts is None: opts = self.model._meta if start_alias: table_alias = start_alias else: table_alias = self.tables[0] root_pk = opts.pk.column seen = {None: table_alias} qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name aliases = set() for field, model in opts.get_fields_with_model(): try: alias = seen[model] except KeyError: alias = self.join((table_alias, model._meta.db_table, root_pk, model._meta.pk.column)) seen[model] = alias if as_pairs: result.append((alias, field.column)) continue if with_aliases and field.column in col_aliases: c_alias = 'Col%d' % len(col_aliases) result.append('%s.%s AS %s' % (qn(alias), qn2(field.column), c_alias)) col_aliases.add(c_alias) aliases.add(c_alias) else: r = '%s.%s' % (qn(alias), qn2(field.column)) result.append(r) aliases.add(r) if with_aliases: col_aliases.add(field.column) if as_pairs: return result, None return result, aliases def get_from_clause(self): """ Returns a list of strings that are joined together to go after the "FROM" part of the query, as well as a list any extra parameters that need to be included. Sub-classes, can override this to create a from-clause via a "select", for example (e.g. CountQuery). This should only be called after any SQL construction methods that might change the tables we need. This means the select columns and ordering must be done first. """ result = [] qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name first = True for alias in self.tables: if not self.alias_refcount[alias]: continue try: name, alias, join_type, lhs, lhs_col, col, nullable = self.alias_map[alias] except KeyError: # Extra tables can end up in self.tables, but not in the # alias_map if they aren't in a join. That's OK. We skip them. continue alias_str = (alias != name and ' %s' % alias or '') if join_type and not first: result.append('%s %s%s ON (%s.%s = %s.%s)' % (join_type, qn(name), alias_str, qn(lhs), qn2(lhs_col), qn(alias), qn2(col))) else: connector = not first and ', ' or '' result.append('%s%s%s' % (connector, qn(name), alias_str)) first = False for t in self.extra_tables: alias, unused = self.table_alias(t) # Only add the alias if it's not already present (the table_alias() # calls increments the refcount, so an alias refcount of one means # this is the only reference. if alias not in self.alias_map or self.alias_refcount[alias] == 1: connector = not first and ', ' or '' result.append('%s%s' % (connector, qn(alias))) first = False return result, [] def get_grouping(self): """ Returns a tuple representing the SQL elements in the "group by" clause. """ qn = self.quote_name_unless_alias result = [] for col in self.group_by: if isinstance(col, (list, tuple)): result.append('%s.%s' % (qn(col[0]), qn(col[1]))) elif hasattr(col, 'as_sql'): result.append(col.as_sql(qn)) else: result.append(str(col)) return result def get_having(self): """ Returns a tuple representing the SQL elements in the "having" clause. By default, the elements of self.having have their as_sql() method called or are returned unchanged (if they don't have an as_sql() method). """ result = [] params = [] for elt in self.having: if hasattr(elt, 'as_sql'): sql, params = elt.as_sql() result.append(sql) params.extend(params) else: result.append(elt) return result, params def get_ordering(self): """ Returns list representing the SQL elements in the "order by" clause. Also sets the ordering_aliases attribute on this instance to a list of extra aliases needed in the select. Determining the ordering SQL can change the tables we need to include, so this should be run *before* get_from_clause(). """ if self.extra_order_by: ordering = self.extra_order_by elif not self.default_ordering: ordering = [] else: ordering = self.order_by or self.model._meta.ordering qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name distinct = self.distinct select_aliases = self._select_aliases result = [] ordering_aliases = [] if self.standard_ordering: asc, desc = ORDER_DIR['ASC'] else: asc, desc = ORDER_DIR['DESC'] for field in ordering: if field == '?': result.append(self.connection.ops.random_function_sql()) continue if isinstance(field, int): if field < 0: order = desc field = -field else: order = asc result.append('%s %s' % (field, order)) continue if '.' in field: # This came in through an extra(order_by=...) addition. Pass it # on verbatim. col, order = get_order_dir(field, asc) table, col = col.split('.', 1) elt = '%s.%s' % (qn(table), col) if not distinct or elt in select_aliases: result.append('%s %s' % (elt, order)) elif get_order_dir(field)[0] not in self.extra_select: # 'col' is of the form 'field' or 'field1__field2' or # '-field1__field2__field', etc. for table, col, order in self.find_ordering_name(field, self.model._meta, default_order=asc): elt = '%s.%s' % (qn(table), qn2(col)) if distinct and elt not in select_aliases: ordering_aliases.append(elt) result.append('%s %s' % (elt, order)) else: col, order = get_order_dir(field, asc) elt = qn2(col) if distinct and col not in select_aliases: ordering_aliases.append(elt) result.append('%s %s' % (elt, order)) self.ordering_aliases = ordering_aliases return result def find_ordering_name(self, name, opts, alias=None, default_order='ASC', already_seen=None): """ Returns the table alias (the name might be ambiguous, the alias will not be) and column name for ordering by the given 'name' parameter. The 'name' is of the form 'field1__field2__...__fieldN'. """ name, order = get_order_dir(name, default_order) pieces = name.split(LOOKUP_SEP) if not alias: alias = self.get_initial_alias() field, target, opts, joins, last, extra = self.setup_joins(pieces, opts, alias, False) alias = joins[-1] col = target.column if not field.rel: # To avoid inadvertent trimming of a necessary alias, use the # refcount to show that we are referencing a non-relation field on # the model. self.ref_alias(alias) # Must use left outer joins for nullable fields. self.promote_alias_chain(joins) # If we get to this point and the field is a relation to another model, # append the default ordering for that model. if field.rel and len(joins) > 1 and opts.ordering: # Firstly, avoid infinite loops. if not already_seen: already_seen = set() join_tuple = tuple([self.alias_map[j][TABLE_NAME] for j in joins]) if join_tuple in already_seen: raise FieldError('Infinite loop caused by ordering.') already_seen.add(join_tuple) results = [] for item in opts.ordering: results.extend(self.find_ordering_name(item, opts, alias, order, already_seen)) return results if alias: # We have to do the same "final join" optimisation as in # add_filter, since the final column might not otherwise be part of # the select set (so we can't order on it). while 1: join = self.alias_map[alias] if col != join[RHS_JOIN_COL]: break self.unref_alias(alias) alias = join[LHS_ALIAS] col = join[LHS_JOIN_COL] return [(alias, col, order)] def table_alias(self, table_name, create=False): """ Returns a table alias for the given table_name and whether this is a new alias or not. If 'create' is true, a new alias is always created. Otherwise, the most recently created alias for the table (if one exists) is reused. """ current = self.table_map.get(table_name) if not create and current: alias = current[0] self.alias_refcount[alias] += 1 return alias, False # Create a new alias for this table. if current: alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1) current.append(alias) else: # The first occurence of a table uses the table name directly. alias = table_name self.table_map[alias] = [alias] self.alias_refcount[alias] = 1 self.tables.append(alias) return alias, True def ref_alias(self, alias): """ Increases the reference count for this alias. """ self.alias_refcount[alias] += 1 def unref_alias(self, alias): """ Decreases the reference count for this alias. """ self.alias_refcount[alias] -= 1 def promote_alias(self, alias, unconditional=False): """ Promotes the join type of an alias to an outer join if it's possible for the join to contain NULL values on the left. If 'unconditional' is False, the join is only promoted if it is nullable, otherwise it is always promoted. Returns True if the join was promoted. """ if ((unconditional or self.alias_map[alias][NULLABLE]) and self.alias_map[alias][JOIN_TYPE] != self.LOUTER): data = list(self.alias_map[alias]) data[JOIN_TYPE] = self.LOUTER self.alias_map[alias] = tuple(data) return True return False def promote_alias_chain(self, chain, must_promote=False): """ Walks along a chain of aliases, promoting the first nullable join and any joins following that. If 'must_promote' is True, all the aliases in the chain are promoted. """ for alias in chain: if self.promote_alias(alias, must_promote): must_promote = True def promote_unused_aliases(self, initial_refcounts, used_aliases): """ Given a "before" copy of the alias_refcounts dictionary (as 'initial_refcounts') and a collection of aliases that may have been changed or created, works out which aliases have been created since then and which ones haven't been used and promotes all of those aliases, plus any children of theirs in the alias tree, to outer joins. """ # FIXME: There's some (a lot of!) overlap with the similar OR promotion # in add_filter(). It's not quite identical, but is very similar. So # pulling out the common bits is something for later. considered = {} for alias in self.tables: if alias not in used_aliases: continue if (alias not in initial_refcounts or self.alias_refcount[alias] == initial_refcounts[alias]): parent = self.alias_map[alias][LHS_ALIAS] must_promote = considered.get(parent, False) promoted = self.promote_alias(alias, must_promote) considered[alias] = must_promote or promoted def change_aliases(self, change_map): """ Changes the aliases in change_map (which maps old-alias -> new-alias), relabelling any references to them in select columns and the where clause. """ assert set(change_map.keys()).intersection(set(change_map.values())) == set() # 1. Update references in "select" and "where". self.where.relabel_aliases(change_map) for pos, col in enumerate(self.select): if isinstance(col, (list, tuple)): self.select[pos] = (change_map.get(old_alias, old_alias), col[1]) else: col.relabel_aliases(change_map) # 2. Rename the alias in the internal table/alias datastructures. for old_alias, new_alias in change_map.iteritems(): alias_data = list(self.alias_map[old_alias]) alias_data[RHS_ALIAS] = new_alias t = self.rev_join_map[old_alias] data = list(self.join_map[t]) data[data.index(old_alias)] = new_alias self.join_map[t] = tuple(data) self.rev_join_map[new_alias] = t del self.rev_join_map[old_alias] self.alias_refcount[new_alias] = self.alias_refcount[old_alias] del self.alias_refcount[old_alias] self.alias_map[new_alias] = tuple(alias_data) del self.alias_map[old_alias] table_aliases = self.table_map[alias_data[TABLE_NAME]] for pos, alias in enumerate(table_aliases): if alias == old_alias: table_aliases[pos] = new_alias break for pos, alias in enumerate(self.tables): if alias == old_alias: self.tables[pos] = new_alias break # 3. Update any joins that refer to the old alias. for alias, data in self.alias_map.iteritems(): lhs = data[LHS_ALIAS] if lhs in change_map: data = list(data) data[LHS_ALIAS] = change_map[lhs] self.alias_map[alias] = tuple(data) def bump_prefix(self, exceptions=()): """ Changes the alias prefix to the next letter in the alphabet and relabels all the aliases. Even tables that previously had no alias will get an alias after this call (it's mostly used for nested queries and the outer query will already be using the non-aliased table name). Subclasses who create their own prefix should override this method to produce a similar result (a new prefix and relabelled aliases). The 'exceptions' parameter is a container that holds alias names which should not be changed. """ current = ord(self.alias_prefix) assert current < ord('Z') prefix = chr(current + 1) self.alias_prefix = prefix change_map = {} for pos, alias in enumerate(self.tables): if alias in exceptions: continue new_alias = '%s%d' % (prefix, pos) change_map[alias] = new_alias self.tables[pos] = new_alias self.change_aliases(change_map) def get_initial_alias(self): """ Returns the first alias for this query, after increasing its reference count. """ if self.tables: alias = self.tables[0] self.ref_alias(alias) else: alias = self.join((None, self.model._meta.db_table, None, None)) return alias def count_active_tables(self): """ Returns the number of tables in this query with a non-zero reference count. """ return len([1 for count in self.alias_refcount.itervalues() if count]) def join(self, connection, always_create=False, exclusions=(), promote=False, outer_if_first=False, nullable=False, reuse=None): """ Returns an alias for the join in 'connection', either reusing an existing alias for that join or creating a new one. 'connection' is a tuple (lhs, table, lhs_col, col) where 'lhs' is either an existing table alias or a table name. The join correspods to the SQL equivalent of:: lhs.lhs_col = table.col If 'always_create' is True and 'reuse' is None, a new alias is always created, regardless of whether one already exists or not. Otherwise 'reuse' must be a set and a new join is created unless one of the aliases in `reuse` can be used. If 'exclusions' is specified, it is something satisfying the container protocol ("foo in exclusions" must work) and specifies a list of aliases that should not be returned, even if they satisfy the join. If 'promote' is True, the join type for the alias will be LOUTER (if the alias previously existed, the join type will be promoted from INNER to LOUTER, if necessary). If 'outer_if_first' is True and a new join is created, it will have the LOUTER join type. This is used when joining certain types of querysets and Q-objects together. If 'nullable' is True, the join can potentially involve NULL values and is a candidate for promotion (to "left outer") when combining querysets. """ lhs, table, lhs_col, col = connection if lhs in self.alias_map: lhs_table = self.alias_map[lhs][TABLE_NAME] else: lhs_table = lhs if reuse and always_create and table in self.table_map: # Convert the 'reuse' to case to be "exclude everything but the # reusable set, minus exclusions, for this table". exclusions = set(self.table_map[table]).difference(reuse).union(set(exclusions)) always_create = False t_ident = (lhs_table, table, lhs_col, col) if not always_create: for alias in self.join_map.get(t_ident, ()): if alias not in exclusions: if lhs_table and not self.alias_refcount[self.alias_map[alias][LHS_ALIAS]]: # The LHS of this join tuple is no longer part of the # query, so skip this possibility. continue if self.alias_map[alias][LHS_ALIAS] != lhs: continue self.ref_alias(alias) if promote: self.promote_alias(alias) return alias # No reuse is possible, so we need a new alias. alias, _ = self.table_alias(table, True) if not lhs: # Not all tables need to be joined to anything. No join type # means the later columns are ignored. join_type = None elif promote or outer_if_first: join_type = self.LOUTER else: join_type = self.INNER join = (table, alias, join_type, lhs, lhs_col, col, nullable) self.alias_map[alias] = join if t_ident in self.join_map: self.join_map[t_ident] += (alias,) else: self.join_map[t_ident] = (alias,) self.rev_join_map[alias] = t_ident return alias def fill_related_selections(self, opts=None, root_alias=None, cur_depth=1, used=None, requested=None, restricted=None, nullable=None, dupe_set=None, avoid_set=None): """ Fill in the information needed for a select_related query. The current depth is measured as the number of connections away from the root model (for example, cur_depth=1 means we are looking at models with direct connections to the root model). """ if not restricted and self.max_depth and cur_depth > self.max_depth: # We've recursed far enough; bail out. return if not opts: opts = self.get_meta() root_alias = self.get_initial_alias() self.related_select_cols = [] self.related_select_fields = [] if not used: used = set() if dupe_set is None: dupe_set = set() if avoid_set is None: avoid_set = set() orig_dupe_set = dupe_set # Setup for the case when only particular related fields should be # included in the related selection. if requested is None and restricted is not False: if isinstance(self.select_related, dict): requested = self.select_related restricted = True else: restricted = False for f, model in opts.get_fields_with_model(): if not select_related_descend(f, restricted, requested): continue # The "avoid" set is aliases we want to avoid just for this # particular branch of the recursion. They aren't permanently # forbidden from reuse in the related selection tables (which is # what "used" specifies). avoid = avoid_set.copy() dupe_set = orig_dupe_set.copy() table = f.rel.to._meta.db_table if nullable or f.null: promote = True else: promote = False if model: int_opts = opts alias = root_alias for int_model in opts.get_base_chain(model): lhs_col = int_opts.parents[int_model].column dedupe = lhs_col in opts.duplicate_targets if dedupe: avoid.update(self.dupe_avoidance.get(id(opts), lhs_col), ()) dupe_set.add((opts, lhs_col)) int_opts = int_model._meta alias = self.join((alias, int_opts.db_table, lhs_col, int_opts.pk.column), exclusions=used, promote=promote) for (dupe_opts, dupe_col) in dupe_set: self.update_dupe_avoidance(dupe_opts, dupe_col, alias) else: alias = root_alias dedupe = f.column in opts.duplicate_targets if dupe_set or dedupe: avoid.update(self.dupe_avoidance.get((id(opts), f.column), ())) if dedupe: dupe_set.add((opts, f.column)) alias = self.join((alias, table, f.column, f.rel.get_related_field().column), exclusions=used.union(avoid), promote=promote) used.add(alias) self.related_select_cols.extend(self.get_default_columns( start_alias=alias, opts=f.rel.to._meta, as_pairs=True)[0]) self.related_select_fields.extend(f.rel.to._meta.fields) if restricted: next = requested.get(f.name, {}) else: next = False if f.null is not None: new_nullable = f.null else: new_nullable = None for dupe_opts, dupe_col in dupe_set: self.update_dupe_avoidance(dupe_opts, dupe_col, alias) self.fill_related_selections(f.rel.to._meta, alias, cur_depth + 1, used, next, restricted, new_nullable, dupe_set, avoid) def add_filter(self, filter_expr, connector=AND, negate=False, trim=False, can_reuse=None, process_extras=True): """ Add a single filter to the query. The 'filter_expr' is a pair: (filter_string, value). E.g. ('name__contains', 'fred') If 'negate' is True, this is an exclude() filter. It's important to note that this method does not negate anything in the where-clause object when inserting the filter constraints. This is because negated filters often require multiple calls to add_filter() and the negation should only happen once. So the caller is responsible for this (the caller will normally be add_q(), so that as an example). If 'trim' is True, we automatically trim the final join group (used internally when constructing nested queries). If 'can_reuse' is a set, we are processing a component of a multi-component filter (e.g. filter(Q1, Q2)). In this case, 'can_reuse' will be a set of table aliases that can be reused in this filter, even if we would otherwise force the creation of new aliases for a join (needed for nested Q-filters). The set is updated by this method. If 'process_extras' is set, any extra filters returned from the table joining process will be processed. This parameter is set to False during the processing of extra filters to avoid infinite recursion. """ arg, value = filter_expr parts = arg.split(LOOKUP_SEP) if not parts: raise FieldError("Cannot parse keyword query %r" % arg) # Work out the lookup type and remove it from 'parts', if necessary. if len(parts) == 1 or parts[-1] not in self.query_terms: lookup_type = 'exact' else: lookup_type = parts.pop() # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all # uses of None as a query value. if value is None: if lookup_type != 'exact': raise ValueError("Cannot use None as a query value") lookup_type = 'isnull' value = True elif (value == '' and lookup_type == 'exact' and connection.features.interprets_empty_strings_as_nulls): lookup_type = 'isnull' value = True elif callable(value): value = value() opts = self.get_meta() alias = self.get_initial_alias() allow_many = trim or not negate try: field, target, opts, join_list, last, extra_filters = self.setup_joins( parts, opts, alias, True, allow_many, can_reuse=can_reuse, negate=negate, process_extras=process_extras) except MultiJoin, e: self.split_exclude(filter_expr, LOOKUP_SEP.join(parts[:e.level]), can_reuse) return final = len(join_list) penultimate = last.pop() if penultimate == final: penultimate = last.pop() if trim and len(join_list) > 1: extra = join_list[penultimate:] join_list = join_list[:penultimate] final = penultimate penultimate = last.pop() col = self.alias_map[extra[0]][LHS_JOIN_COL] for alias in extra: self.unref_alias(alias) else: col = target.column alias = join_list[-1] while final > 1: # An optimization: if the final join is against the same column as # we are comparing against, we can go back one step in the join # chain and compare against the lhs of the join instead (and then # repeat the optimization). The result, potentially, involves less # table joins. join = self.alias_map[alias] if col != join[RHS_JOIN_COL]: break self.unref_alias(alias) alias = join[LHS_ALIAS] col = join[LHS_JOIN_COL] join_list = join_list[:-1] final -= 1 if final == penultimate: penultimate = last.pop() if (lookup_type == 'isnull' and value is True and not negate and final > 1): # If the comparison is against NULL, we need to use a left outer # join when connecting to the previous model. We make that # adjustment here. We don't do this unless needed as it's less # efficient at the database level. self.promote_alias(join_list[penultimate]) if connector == OR: # Some joins may need to be promoted when adding a new filter to a # disjunction. We walk the list of new joins and where it diverges # from any previous joins (ref count is 1 in the table list), we # make the new additions (and any existing ones not used in the new # join list) an outer join. join_it = iter(join_list) table_it = iter(self.tables) join_it.next(), table_it.next() table_promote = False join_promote = False for join in join_it: table = table_it.next() if join == table and self.alias_refcount[join] > 1: continue join_promote = self.promote_alias(join) if table != join: table_promote = self.promote_alias(table) break self.promote_alias_chain(join_it, join_promote) self.promote_alias_chain(table_it, table_promote) self.where.add((alias, col, field, lookup_type, value), connector) if negate: self.promote_alias_chain(join_list) if lookup_type != 'isnull': if final > 1: for alias in join_list: if self.alias_map[alias][JOIN_TYPE] == self.LOUTER: j_col = self.alias_map[alias][RHS_JOIN_COL] entry = self.where_class() entry.add((alias, j_col, None, 'isnull', True), AND) entry.negate() self.where.add(entry, AND) break elif not (lookup_type == 'in' and not value) and field.null: # Leaky abstraction artifact: We have to specifically # exclude the "foo__in=[]" case from this handling, because # it's short-circuited in the Where class. entry = self.where_class() entry.add((alias, col, None, 'isnull', True), AND) entry.negate() self.where.add(entry, AND) if can_reuse is not None: can_reuse.update(join_list) if process_extras: for filter in extra_filters: self.add_filter(filter, negate=negate, can_reuse=can_reuse, process_extras=False) def add_q(self, q_object, used_aliases=None): """ Adds a Q-object to the current filter. Can also be used to add anything that has an 'add_to_query()' method. """ if used_aliases is None: used_aliases = self.used_aliases if hasattr(q_object, 'add_to_query'): # Complex custom objects are responsible for adding themselves. q_object.add_to_query(self, used_aliases) else: if self.where and q_object.connector != AND and len(q_object) > 1: self.where.start_subtree(AND) subtree = True else: subtree = False connector = AND for child in q_object.children: if connector == OR: refcounts_before = self.alias_refcount.copy() if isinstance(child, Node): self.where.start_subtree(connector) self.add_q(child, used_aliases) self.where.end_subtree() else: self.add_filter(child, connector, q_object.negated, can_reuse=used_aliases) if connector == OR: # Aliases that were newly added or not used at all need to # be promoted to outer joins if they are nullable relations. # (they shouldn't turn the whole conditional into the empty # set just because they don't match anything). self.promote_unused_aliases(refcounts_before, used_aliases) connector = q_object.connector if q_object.negated: self.where.negate() if subtree: self.where.end_subtree() if self.filter_is_sticky: self.used_aliases = used_aliases def setup_joins(self, names, opts, alias, dupe_multis, allow_many=True, allow_explicit_fk=False, can_reuse=None, negate=False, process_extras=True): """ Compute the necessary table joins for the passage through the fields given in 'names'. 'opts' is the Options class for the current model (which gives the table we are joining to), 'alias' is the alias for the table we are joining to. If dupe_multis is True, any many-to-many or many-to-one joins will always create a new alias (necessary for disjunctive filters). If can_reuse is not None, it's a list of aliases that can be reused in these joins (nothing else can be reused in this case). Finally, 'negate' is used in the same sense as for add_filter() -- it indicates an exclude() filter, or something similar. It is only passed in here so that it can be passed to a field's extra_filter() for customised behaviour. Returns the final field involved in the join, the target database column (used for any 'where' constraint), the final 'opts' value and the list of tables joined. """ joins = [alias] last = [0] dupe_set = set() exclusions = set() extra_filters = [] for pos, name in enumerate(names): try: exclusions.add(int_alias) except NameError: pass exclusions.add(alias) last.append(len(joins)) if name == 'pk': name = opts.pk.name try: field, model, direct, m2m = opts.get_field_by_name(name) except FieldDoesNotExist: for f in opts.fields: if allow_explicit_fk and name == f.attname: # XXX: A hack to allow foo_id to work in values() for # backwards compatibility purposes. If we dropped that # feature, this could be removed. field, model, direct, m2m = opts.get_field_by_name(f.name) break else: names = opts.get_all_field_names() raise FieldError("Cannot resolve keyword %r into field. " "Choices are: %s" % (name, ", ".join(names))) if not allow_many and (m2m or not direct): for alias in joins: self.unref_alias(alias) raise MultiJoin(pos + 1) if model: # The field lives on a base class of the current model. for int_model in opts.get_base_chain(model): lhs_col = opts.parents[int_model].column dedupe = lhs_col in opts.duplicate_targets if dedupe: exclusions.update(self.dupe_avoidance.get( (id(opts), lhs_col), ())) dupe_set.add((opts, lhs_col)) opts = int_model._meta alias = self.join((alias, opts.db_table, lhs_col, opts.pk.column), exclusions=exclusions) joins.append(alias) exclusions.add(alias) for (dupe_opts, dupe_col) in dupe_set: self.update_dupe_avoidance(dupe_opts, dupe_col, alias) cached_data = opts._join_cache.get(name) orig_opts = opts dupe_col = direct and field.column or field.field.column dedupe = dupe_col in opts.duplicate_targets if dupe_set or dedupe: if dedupe: dupe_set.add((opts, dupe_col)) exclusions.update(self.dupe_avoidance.get((id(opts), dupe_col), ())) if process_extras and hasattr(field, 'extra_filters'): extra_filters.extend(field.extra_filters(names, pos, negate)) if direct: if m2m: # Many-to-many field defined on the current model. if cached_data: (table1, from_col1, to_col1, table2, from_col2, to_col2, opts, target) = cached_data else: table1 = field.m2m_db_table() from_col1 = opts.pk.column to_col1 = field.m2m_column_name() opts = field.rel.to._meta table2 = opts.db_table from_col2 = field.m2m_reverse_name() to_col2 = opts.pk.column target = opts.pk orig_opts._join_cache[name] = (table1, from_col1, to_col1, table2, from_col2, to_col2, opts, target) int_alias = self.join((alias, table1, from_col1, to_col1), dupe_multis, exclusions, nullable=True, reuse=can_reuse) if int_alias == table2 and from_col2 == to_col2: joins.append(int_alias) alias = int_alias else: alias = self.join( (int_alias, table2, from_col2, to_col2), dupe_multis, exclusions, nullable=True, reuse=can_reuse) joins.extend([int_alias, alias]) elif field.rel: # One-to-one or many-to-one field if cached_data: (table, from_col, to_col, opts, target) = cached_data else: opts = field.rel.to._meta target = field.rel.get_related_field() table = opts.db_table from_col = field.column to_col = target.column orig_opts._join_cache[name] = (table, from_col, to_col, opts, target) alias = self.join((alias, table, from_col, to_col), exclusions=exclusions, nullable=field.null) joins.append(alias) else: # Non-relation fields. target = field break else: orig_field = field field = field.field if m2m: # Many-to-many field defined on the target model. if cached_data: (table1, from_col1, to_col1, table2, from_col2, to_col2, opts, target) = cached_data else: table1 = field.m2m_db_table() from_col1 = opts.pk.column to_col1 = field.m2m_reverse_name() opts = orig_field.opts table2 = opts.db_table from_col2 = field.m2m_column_name() to_col2 = opts.pk.column target = opts.pk orig_opts._join_cache[name] = (table1, from_col1, to_col1, table2, from_col2, to_col2, opts, target) int_alias = self.join((alias, table1, from_col1, to_col1), dupe_multis, exclusions, nullable=True, reuse=can_reuse) alias = self.join((int_alias, table2, from_col2, to_col2), dupe_multis, exclusions, nullable=True, reuse=can_reuse) joins.extend([int_alias, alias]) else: # One-to-many field (ForeignKey defined on the target model) if cached_data: (table, from_col, to_col, opts, target) = cached_data else: local_field = opts.get_field_by_name( field.rel.field_name)[0] opts = orig_field.opts table = opts.db_table from_col = local_field.column to_col = field.column target = opts.pk orig_opts._join_cache[name] = (table, from_col, to_col, opts, target) alias = self.join((alias, table, from_col, to_col), dupe_multis, exclusions, nullable=True, reuse=can_reuse) joins.append(alias) for (dupe_opts, dupe_col) in dupe_set: try: self.update_dupe_avoidance(dupe_opts, dupe_col, int_alias) except NameError: self.update_dupe_avoidance(dupe_opts, dupe_col, alias) if pos != len(names) - 1: raise FieldError("Join on field %r not permitted." % name) return field, target, opts, joins, last, extra_filters def update_dupe_avoidance(self, opts, col, alias): """ For a column that is one of multiple pointing to the same table, update the internal data structures to note that this alias shouldn't be used for those other columns. """ ident = id(opts) for name in opts.duplicate_targets[col]: try: self.dupe_avoidance[ident, name].add(alias) except KeyError: self.dupe_avoidance[ident, name] = set([alias]) def split_exclude(self, filter_expr, prefix, can_reuse): """ When doing an exclude against any kind of N-to-many relation, we need to use a subquery. This method constructs the nested query, given the original exclude filter (filter_expr) and the portion up to the first N-to-many relation field. """ query = Query(self.model, self.connection) query.add_filter(filter_expr, can_reuse=can_reuse) query.bump_prefix() query.set_start(prefix) query.clear_ordering(True) self.add_filter(('%s__in' % prefix, query), negate=True, trim=True, can_reuse=can_reuse) def set_limits(self, low=None, high=None): """ Adjusts the limits on the rows retrieved. We use low/high to set these, as it makes it more Pythonic to read and write. When the SQL query is created, they are converted to the appropriate offset and limit values. Any limits passed in here are applied relative to the existing constraints. So low is added to the current low value and both will be clamped to any existing high value. """ if high is not None: if self.high_mark: self.high_mark = min(self.high_mark, self.low_mark + high) else: self.high_mark = self.low_mark + high if low is not None: if self.high_mark: self.low_mark = min(self.high_mark, self.low_mark + low) else: self.low_mark = self.low_mark + low def clear_limits(self): """ Clears any existing limits. """ self.low_mark, self.high_mark = 0, None def can_filter(self): """ Returns True if adding filters to this instance is still possible. Typically, this means no limits or offsets have been put on the results. """ return not (self.low_mark or self.high_mark) def add_fields(self, field_names, allow_m2m=True): """ Adds the given (model) fields to the select set. The field names are added in the order specified. """ alias = self.get_initial_alias() opts = self.get_meta() try: for name in field_names: field, target, u2, joins, u3, u4 = self.setup_joins( name.split(LOOKUP_SEP), opts, alias, False, allow_m2m, True) final_alias = joins[-1] col = target.column if len(joins) > 1: join = self.alias_map[final_alias] if col == join[RHS_JOIN_COL]: self.unref_alias(final_alias) final_alias = join[LHS_ALIAS] col = join[LHS_JOIN_COL] joins = joins[:-1] self.promote_alias_chain(joins[1:]) self.select.append((final_alias, col)) self.select_fields.append(field) except MultiJoin: raise FieldError("Invalid field name: '%s'" % name) except FieldError: names = opts.get_all_field_names() + self.extra_select.keys() names.sort() raise FieldError("Cannot resolve keyword %r into field. " "Choices are: %s" % (name, ", ".join(names))) def add_ordering(self, *ordering): """ Adds items from the 'ordering' sequence to the query's "order by" clause. These items are either field names (not column names) -- possibly with a direction prefix ('-' or '?') -- or ordinals, corresponding to column positions in the 'select' list. If 'ordering' is empty, all ordering is cleared from the query. """ errors = [] for item in ordering: if not ORDER_PATTERN.match(item): errors.append(item) if errors: raise FieldError('Invalid order_by arguments: %s' % errors) if ordering: self.order_by.extend(ordering) else: self.default_ordering = False def clear_ordering(self, force_empty=False): """ Removes any ordering settings. If 'force_empty' is True, there will be no ordering in the resulting query (not even the model's default). """ self.order_by = [] self.extra_order_by = () if force_empty: self.default_ordering = False def add_count_column(self): """ Converts the query to do count(...) or count(distinct(pk)) in order to get its size. """ # TODO: When group_by support is added, this needs to be adjusted so # that it doesn't totally overwrite the select list. if not self.distinct: if not self.select: select = Count() else: assert len(self.select) == 1, \ "Cannot add count col with multiple cols in 'select': %r" % self.select select = Count(self.select[0]) else: opts = self.model._meta if not self.select: select = Count((self.join((None, opts.db_table, None, None)), opts.pk.column), True) else: # Because of SQL portability issues, multi-column, distinct # counts need a sub-query -- see get_count() for details. assert len(self.select) == 1, \ "Cannot add count col with multiple cols in 'select'." select = Count(self.select[0], True) # Distinct handling is done in Count(), so don't do it at this # level. self.distinct = False self.select = [select] self.select_fields = [None] self.extra_select = {} def add_select_related(self, fields): """ Sets up the select_related data structure so that we only select certain related models (as opposed to all models, when self.select_related=True). """ field_dict = {} for field in fields: d = field_dict for part in field.split(LOOKUP_SEP): d = d.setdefault(part, {}) self.select_related = field_dict self.related_select_cols = [] self.related_select_fields = [] def add_extra(self, select, select_params, where, params, tables, order_by): """ Adds data to the various extra_* attributes for user-created additions to the query. """ if select: # We need to pair any placeholder markers in the 'select' # dictionary with their parameters in 'select_params' so that # subsequent updates to the select dictionary also adjust the # parameters appropriately. select_pairs = SortedDict() if select_params: param_iter = iter(select_params) else: param_iter = iter([]) for name, entry in select.items(): entry = force_unicode(entry) entry_params = [] pos = entry.find("%s") while pos != -1: entry_params.append(param_iter.next()) pos = entry.find("%s", pos + 2) select_pairs[name] = (entry, entry_params) # This is order preserving, since self.extra_select is a SortedDict. self.extra_select.update(select_pairs) if where: self.extra_where += tuple(where) if params: self.extra_params += tuple(params) if tables: self.extra_tables += tuple(tables) if order_by: self.extra_order_by = order_by def trim_extra_select(self, names): """ Removes any aliases in the extra_select dictionary that aren't in 'names'. This is needed if we are selecting certain values that don't incldue all of the extra_select names. """ for key in set(self.extra_select).difference(set(names)): del self.extra_select[key] def set_start(self, start): """ Sets the table from which to start joining. The start position is specified by the related attribute from the base model. This will automatically set to the select column to be the column linked from the previous table. This method is primarily for internal use and the error checking isn't as friendly as add_filter(). Mostly useful for querying directly against the join table of many-to-many relation in a subquery. """ opts = self.model._meta alias = self.get_initial_alias() field, col, opts, joins, last, extra = self.setup_joins( start.split(LOOKUP_SEP), opts, alias, False) self.unref_alias(alias) alias = joins[last[-1]] self.select = [(alias, self.alias_map[alias][RHS_JOIN_COL])] self.select_fields = [field] self.start_meta = opts # The call to setup_joins add an extra reference to everything in # joins. So we need to unref everything once, and everything prior to # the final join a second time. for alias in joins: self.unref_alias(alias) for alias in joins[:last[-1]]: self.unref_alias(alias) def execute_sql(self, result_type=MULTI): """ Run the query against the database and returns the result(s). The return value is a single data item if result_type is SINGLE, or an iterator over the results if the result_type is MULTI. result_type is either MULTI (use fetchmany() to retrieve all rows), SINGLE (only retrieve a single row), or None (no results expected, but the cursor is returned, since it's used by subclasses such as InsertQuery). """ try: sql, params = self.as_sql() if not sql: raise EmptyResultSet except EmptyResultSet: if result_type == MULTI: return empty_iter() else: return cursor = self.connection.cursor() cursor.execute(sql, params) if not result_type: return cursor if result_type == SINGLE: if self.ordering_aliases: return cursor.fetchone()[:-len(results.ordering_aliases)] return cursor.fetchone() # The MULTI case. if self.ordering_aliases: result = order_modified_iter(cursor, len(self.ordering_aliases), self.connection.features.empty_fetchmany_value) else: result = iter((lambda: cursor.fetchmany(GET_ITERATOR_CHUNK_SIZE)), self.connection.features.empty_fetchmany_value) if not self.connection.features.can_use_chunked_reads: # If we are using non-chunked reads, we return the same data # structure as normally, but ensure it is all read into memory # before going any further. return list(result) return result # Use the backend's custom Query class if it defines one. Otherwise, use the # default. if connection.features.uses_custom_query_class: Query = connection.ops.query_class(Query) def get_order_dir(field, default='ASC'): """ Returns the field name and direction for an order specification. For example, '-foo' is returned as ('foo', 'DESC'). The 'default' param is used to indicate which way no prefix (or a '+' prefix) should sort. The '-' prefix always sorts the opposite way. """ dirn = ORDER_DIR[default] if field[0] == '-': return field[1:], dirn[1] return field, dirn[0] def empty_iter(): """ Returns an iterator containing no results. """ yield iter([]).next() def order_modified_iter(cursor, trim, sentinel): """ Yields blocks of rows from a cursor. We use this iterator in the special case when extra output columns have been added to support ordering requirements. We must trim those extra columns before anything else can use the results, since they're only needed to make the SQL valid. """ for rows in iter((lambda: cursor.fetchmany(GET_ITERATOR_CHUNK_SIZE)), sentinel): yield [r[:-trim] for r in rows] def setup_join_cache(sender, **kwargs): """ The information needed to join between model fields is something that is invariant over the life of the model, so we cache it in the model's Options class, rather than recomputing it all the time. This method initialises the (empty) cache when the model is created. """ sender._meta._join_cache = {} signals.class_prepared.connect(setup_join_cache)