""" Base/mixin classes for the spatial backend database operations and the `SpatialRefSys` model. """ from functools import partial import re from django.contrib.gis import gdal from django.utils import six from django.utils.encoding import python_2_unicode_compatible class BaseSpatialFeatures(object): gis_enabled = True # Does the database contain a SpatialRefSys model to store SRID information? has_spatialrefsys_table = True # Does the backend support the django.contrib.gis.utils.add_srs_entry() utility? supports_add_srs_entry = True # Does the backend introspect GeometryField to its subtypes? supports_geometry_field_introspection = True # Reference implementation of 3D functions is: # http://postgis.net/docs/PostGIS_Special_Functions_Index.html#PostGIS_3D_Functions supports_3d_functions = False # Does the database support SRID transform operations? supports_transform = True # Do geometric relationship operations operate on real shapes (or only on bounding boxes)? supports_real_shape_operations = True # Can geometry fields be null? supports_null_geometries = True # Can the `distance` GeoQuerySet method be applied on geodetic coordinate systems? supports_distance_geodetic = True # Is the database able to count vertices on polygons (with `num_points`)? supports_num_points_poly = True # The following properties indicate if the database backend support # certain lookups (dwithin, left and right, relate, ...) supports_distances_lookups = True supports_left_right_lookups = False @property def supports_bbcontains_lookup(self): return 'bbcontains' in self.connection.ops.gis_operators @property def supports_contained_lookup(self): return 'contained' in self.connection.ops.gis_operators @property def supports_dwithin_lookup(self): return 'dwithin' in self.connection.ops.gis_operators @property def supports_relate_lookup(self): return 'relate' in self.connection.ops.gis_operators # For each of those methods, the class will have a property named # `has__method` (defined in __init__) which accesses connection.ops # to determine GIS method availability. geoqueryset_methods = ( 'area', 'centroid', 'difference', 'distance', 'distance_spheroid', 'envelope', 'force_rhr', 'geohash', 'gml', 'intersection', 'kml', 'length', 'num_geom', 'perimeter', 'point_on_surface', 'reverse', 'scale', 'snap_to_grid', 'svg', 'sym_difference', 'transform', 'translate', 'union', 'unionagg', ) # Specifies whether the Collect and Extent aggregates are supported by the database @property def supports_collect_aggr(self): return 'Collect' in self.connection.ops.valid_aggregates @property def supports_extent_aggr(self): return 'Extent' in self.connection.ops.valid_aggregates @property def supports_make_line_aggr(self): return 'MakeLine' in self.connection.ops.valid_aggregates def __init__(self, *args): super(BaseSpatialFeatures, self).__init__(*args) for method in self.geoqueryset_methods: # Add dynamically properties for each GQS method, e.g. has_force_rhr_method, etc. setattr(self.__class__, 'has_%s_method' % method, property(partial(BaseSpatialFeatures.has_ops_method, method=method))) def has_ops_method(self, method): return getattr(self.connection.ops, method, False) class BaseSpatialOperations(object): """ This module holds the base `BaseSpatialBackend` object, which is instantiated by each spatial database backend with the features it has. """ truncate_params = {} # Quick booleans for the type of this spatial backend, and # an attribute for the spatial database version tuple (if applicable) postgis = False spatialite = False mysql = False oracle = False spatial_version = None # How the geometry column should be selected. select = None # Does the spatial database have a geometry or geography type? geography = False geometry = False area = False centroid = False difference = False distance = False distance_sphere = False distance_spheroid = False envelope = False force_rhr = False mem_size = False bounding_circle = False num_geom = False num_points = False perimeter = False perimeter3d = False point_on_surface = False polygonize = False reverse = False scale = False snap_to_grid = False sym_difference = False transform = False translate = False union = False # Aggregates collect = False extent = False extent3d = False make_line = False unionagg = False # Serialization geohash = False geojson = False gml = False kml = False svg = False # Constructors from_text = False from_wkb = False # Default conversion functions for aggregates; will be overridden if implemented # for the spatial backend. def convert_extent(self, box): raise NotImplementedError('Aggregate extent not implemented for this spatial backend.') def convert_extent3d(self, box): raise NotImplementedError('Aggregate 3D extent not implemented for this spatial backend.') def convert_geom(self, geom_val, geom_field): raise NotImplementedError('Aggregate method not implemented for this spatial backend.') # For quoting column values, rather than columns. def geo_quote_name(self, name): return "'%s'" % name # GeometryField operations def geo_db_type(self, f): """ Returns the database column type for the geometry field on the spatial backend. """ raise NotImplementedError('subclasses of BaseSpatialOperations must provide a geo_db_type() method') def get_distance(self, f, value, lookup_type): """ Returns the distance parameters for the given geometry field, lookup value, and lookup type. """ raise NotImplementedError('Distance operations not available on this spatial backend.') def get_geom_placeholder(self, f, value, qn): """ Returns the placeholder for the given geometry field with the given value. Depending on the spatial backend, the placeholder may contain a stored procedure call to the transformation function of the spatial backend. """ raise NotImplementedError('subclasses of BaseSpatialOperations must provide a geo_db_placeholder() method') # Spatial SQL Construction def spatial_aggregate_sql(self, agg): raise NotImplementedError('Aggregate support not implemented for this spatial backend.') # Routines for getting the OGC-compliant models. def geometry_columns(self): raise NotImplementedError('subclasses of BaseSpatialOperations must a provide geometry_columns() method') def spatial_ref_sys(self): raise NotImplementedError('subclasses of BaseSpatialOperations must a provide spatial_ref_sys() method') @python_2_unicode_compatible class SpatialRefSysMixin(object): """ The SpatialRefSysMixin is a class used by the database-dependent SpatialRefSys objects to reduce redundant code. """ # For pulling out the spheroid from the spatial reference string. This # regular expression is used only if the user does not have GDAL installed. # TODO: Flattening not used in all ellipsoids, could also be a minor axis, # or 'b' parameter. spheroid_regex = re.compile(r'.+SPHEROID\[\"(?P.+)\",(?P\d+(\.\d+)?),(?P\d{3}\.\d+),') # For pulling out the units on platforms w/o GDAL installed. # TODO: Figure out how to pull out angular units of projected coordinate system and # fix for LOCAL_CS types. GDAL should be highly recommended for performing # distance queries. units_regex = re.compile( r'.+UNIT ?\["(?P[\w \'\(\)]+)", ?(?P[\d\.]+)' r'(,AUTHORITY\["(?P[\w \'\(\)]+)",' r'"(?P\d+)"\])?\]([\w ]+)?(,' r'AUTHORITY\["(?P[\w \'\(\)]+)","(?P\d+)"\])?\]$' ) @property def srs(self): """ Returns a GDAL SpatialReference object, if GDAL is installed. """ if gdal.HAS_GDAL: # TODO: Is caching really necessary here? Is complexity worth it? if hasattr(self, '_srs'): # Returning a clone of the cached SpatialReference object. return self._srs.clone() else: # Attempting to cache a SpatialReference object. # Trying to get from WKT first. try: self._srs = gdal.SpatialReference(self.wkt) return self.srs except Exception as msg: pass try: self._srs = gdal.SpatialReference(self.proj4text) return self.srs except Exception as msg: pass raise Exception('Could not get OSR SpatialReference from WKT: %s\nError:\n%s' % (self.wkt, msg)) else: raise Exception('GDAL is not installed.') @property def ellipsoid(self): """ Returns a tuple of the ellipsoid parameters: (semimajor axis, semiminor axis, and inverse flattening). """ if gdal.HAS_GDAL: return self.srs.ellipsoid else: m = self.spheroid_regex.match(self.wkt) if m: return (float(m.group('major')), float(m.group('flattening'))) else: return None @property def name(self): "Returns the projection name." return self.srs.name @property def spheroid(self): "Returns the spheroid name for this spatial reference." return self.srs['spheroid'] @property def datum(self): "Returns the datum for this spatial reference." return self.srs['datum'] @property def projected(self): "Is this Spatial Reference projected?" if gdal.HAS_GDAL: return self.srs.projected else: return self.wkt.startswith('PROJCS') @property def local(self): "Is this Spatial Reference local?" if gdal.HAS_GDAL: return self.srs.local else: return self.wkt.startswith('LOCAL_CS') @property def geographic(self): "Is this Spatial Reference geographic?" if gdal.HAS_GDAL: return self.srs.geographic else: return self.wkt.startswith('GEOGCS') @property def linear_name(self): "Returns the linear units name." if gdal.HAS_GDAL: return self.srs.linear_name elif self.geographic: return None else: m = self.units_regex.match(self.wkt) return m.group('unit_name') @property def linear_units(self): "Returns the linear units." if gdal.HAS_GDAL: return self.srs.linear_units elif self.geographic: return None else: m = self.units_regex.match(self.wkt) return m.group('unit') @property def angular_name(self): "Returns the name of the angular units." if gdal.HAS_GDAL: return self.srs.angular_name elif self.projected: return None else: m = self.units_regex.match(self.wkt) return m.group('unit_name') @property def angular_units(self): "Returns the angular units." if gdal.HAS_GDAL: return self.srs.angular_units elif self.projected: return None else: m = self.units_regex.match(self.wkt) return m.group('unit') @property def units(self): "Returns a tuple of the units and the name." if self.projected or self.local: return (self.linear_units, self.linear_name) elif self.geographic: return (self.angular_units, self.angular_name) else: return (None, None) @classmethod def get_units(cls, wkt): """ Class method used by GeometryField on initialization to retrieve the units on the given WKT, without having to use any of the database fields. """ if gdal.HAS_GDAL: return gdal.SpatialReference(wkt).units else: m = cls.units_regex.match(wkt) return m.group('unit'), m.group('unit_name') @classmethod def get_spheroid(cls, wkt, string=True): """ Class method used by GeometryField on initialization to retrieve the `SPHEROID[..]` parameters from the given WKT. """ if gdal.HAS_GDAL: srs = gdal.SpatialReference(wkt) sphere_params = srs.ellipsoid sphere_name = srs['spheroid'] else: m = cls.spheroid_regex.match(wkt) if m: sphere_params = (float(m.group('major')), float(m.group('flattening'))) sphere_name = m.group('name') else: return None if not string: return sphere_name, sphere_params else: # `string` parameter used to place in format acceptable by PostGIS if len(sphere_params) == 3: radius, flattening = sphere_params[0], sphere_params[2] else: radius, flattening = sphere_params return 'SPHEROID["%s",%s,%s]' % (sphere_name, radius, flattening) def __str__(self): """ Returns the string representation. If GDAL is installed, it will be 'pretty' OGC WKT. """ try: return six.text_type(self.srs) except Exception: return six.text_type(self.wkt)