django1/django/contrib/gis/geos/tests/test_geos.py

1108 lines
44 KiB
Python

from __future__ import unicode_literals
import ctypes
import json
import random
import unittest
from unittest import skipUnless
from binascii import a2b_hex, b2a_hex
from io import BytesIO
from django.contrib.gis.gdal import HAS_GDAL
from django.contrib.gis import memoryview
from django.contrib.gis.geometry.test_data import TestDataMixin
from django.utils.encoding import force_bytes
from django.utils import six
from django.utils.six.moves import xrange
from .. import HAS_GEOS
if HAS_GEOS:
from .. import (GEOSException, GEOSIndexError, GEOSGeometry,
GeometryCollection, Point, MultiPoint, Polygon, MultiPolygon, LinearRing,
LineString, MultiLineString, fromfile, fromstr, geos_version_info)
from ..base import gdal, numpy, GEOSBase
@skipUnless(HAS_GEOS, "Geos is required.")
class GEOSTest(unittest.TestCase, TestDataMixin):
@property
def null_srid(self):
"""
Returns the proper null SRID depending on the GEOS version.
See the comments in `test_srid` for more details.
"""
info = geos_version_info()
if info['version'] == '3.0.0' and info['release_candidate']:
return -1
else:
return None
def test_base(self):
"Tests out the GEOSBase class."
# Testing out GEOSBase class, which provides a `ptr` property
# that abstracts out access to underlying C pointers.
class FakeGeom1(GEOSBase):
pass
# This one only accepts pointers to floats
c_float_p = ctypes.POINTER(ctypes.c_float)
class FakeGeom2(GEOSBase):
ptr_type = c_float_p
# Default ptr_type is `c_void_p`.
fg1 = FakeGeom1()
# Default ptr_type is C float pointer
fg2 = FakeGeom2()
# These assignments are OK -- None is allowed because
# it's equivalent to the NULL pointer.
fg1.ptr = ctypes.c_void_p()
fg1.ptr = None
fg2.ptr = c_float_p(ctypes.c_float(5.23))
fg2.ptr = None
# Because pointers have been set to NULL, an exception should be
# raised when we try to access it. Raising an exception is
# preferable to a segmentation fault that commonly occurs when
# a C method is given a NULL memory reference.
for fg in (fg1, fg2):
# Equivalent to `fg.ptr`
self.assertRaises(GEOSException, fg._get_ptr)
# Anything that is either not None or the acceptable pointer type will
# result in a TypeError when trying to assign it to the `ptr` property.
# Thus, memmory addresses (integers) and pointers of the incorrect type
# (in `bad_ptrs`) will not be allowed.
bad_ptrs = (5, ctypes.c_char_p(b'foobar'))
for bad_ptr in bad_ptrs:
# Equivalent to `fg.ptr = bad_ptr`
self.assertRaises(TypeError, fg1._set_ptr, bad_ptr)
self.assertRaises(TypeError, fg2._set_ptr, bad_ptr)
def test_wkt(self):
"Testing WKT output."
for g in self.geometries.wkt_out:
geom = fromstr(g.wkt)
if geom.hasz and geos_version_info()['version'] >= '3.3.0':
self.assertEqual(g.ewkt, geom.wkt)
def test_hex(self):
"Testing HEX output."
for g in self.geometries.hex_wkt:
geom = fromstr(g.wkt)
self.assertEqual(g.hex, geom.hex.decode())
def test_hexewkb(self):
"Testing (HEX)EWKB output."
# For testing HEX(EWKB).
ogc_hex = b'01010000000000000000000000000000000000F03F'
ogc_hex_3d = b'01010000800000000000000000000000000000F03F0000000000000040'
# `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));`
hexewkb_2d = b'0101000020E61000000000000000000000000000000000F03F'
# `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));`
hexewkb_3d = b'01010000A0E61000000000000000000000000000000000F03F0000000000000040'
pnt_2d = Point(0, 1, srid=4326)
pnt_3d = Point(0, 1, 2, srid=4326)
# OGC-compliant HEX will not have SRID value.
self.assertEqual(ogc_hex, pnt_2d.hex)
self.assertEqual(ogc_hex_3d, pnt_3d.hex)
# HEXEWKB should be appropriate for its dimension -- have to use an
# a WKBWriter w/dimension set accordingly, else GEOS will insert
# garbage into 3D coordinate if there is none. Also, GEOS has a
# a bug in versions prior to 3.1 that puts the X coordinate in
# place of Z; an exception should be raised on those versions.
self.assertEqual(hexewkb_2d, pnt_2d.hexewkb)
self.assertEqual(hexewkb_3d, pnt_3d.hexewkb)
self.assertEqual(True, GEOSGeometry(hexewkb_3d).hasz)
# Same for EWKB.
self.assertEqual(memoryview(a2b_hex(hexewkb_2d)), pnt_2d.ewkb)
self.assertEqual(memoryview(a2b_hex(hexewkb_3d)), pnt_3d.ewkb)
# Redundant sanity check.
self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid)
def test_kml(self):
"Testing KML output."
for tg in self.geometries.wkt_out:
geom = fromstr(tg.wkt)
kml = getattr(tg, 'kml', False)
if kml:
self.assertEqual(kml, geom.kml)
def test_errors(self):
"Testing the Error handlers."
# string-based
for err in self.geometries.errors:
with self.assertRaises((GEOSException, ValueError)):
fromstr(err.wkt)
# Bad WKB
self.assertRaises(GEOSException, GEOSGeometry, memoryview(b'0'))
class NotAGeometry(object):
pass
# Some other object
self.assertRaises(TypeError, GEOSGeometry, NotAGeometry())
# None
self.assertRaises(TypeError, GEOSGeometry, None)
def test_wkb(self):
"Testing WKB output."
for g in self.geometries.hex_wkt:
geom = fromstr(g.wkt)
wkb = geom.wkb
self.assertEqual(b2a_hex(wkb).decode().upper(), g.hex)
def test_create_hex(self):
"Testing creation from HEX."
for g in self.geometries.hex_wkt:
geom_h = GEOSGeometry(g.hex)
# we need to do this so decimal places get normalized
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test_create_wkb(self):
"Testing creation from WKB."
for g in self.geometries.hex_wkt:
wkb = memoryview(a2b_hex(g.hex.encode()))
geom_h = GEOSGeometry(wkb)
# we need to do this so decimal places get normalized
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test_ewkt(self):
"Testing EWKT."
srids = (-1, 32140)
for srid in srids:
for p in self.geometries.polygons:
ewkt = 'SRID=%d;%s' % (srid, p.wkt)
poly = fromstr(ewkt)
self.assertEqual(srid, poly.srid)
self.assertEqual(srid, poly.shell.srid)
self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
@skipUnless(HAS_GDAL, "GDAL is required.")
def test_json(self):
"Testing GeoJSON input/output (via GDAL)."
for g in self.geometries.json_geoms:
geom = GEOSGeometry(g.wkt)
if not hasattr(g, 'not_equal'):
# Loading jsons to prevent decimal differences
self.assertEqual(json.loads(g.json), json.loads(geom.json))
self.assertEqual(json.loads(g.json), json.loads(geom.geojson))
self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json))
def test_fromfile(self):
"Testing the fromfile() factory."
ref_pnt = GEOSGeometry('POINT(5 23)')
wkt_f = BytesIO()
wkt_f.write(force_bytes(ref_pnt.wkt))
wkb_f = BytesIO()
wkb_f.write(bytes(ref_pnt.wkb))
# Other tests use `fromfile()` on string filenames so those
# aren't tested here.
for fh in (wkt_f, wkb_f):
fh.seek(0)
pnt = fromfile(fh)
self.assertEqual(ref_pnt, pnt)
def test_eq(self):
"Testing equivalence."
p = fromstr('POINT(5 23)')
self.assertEqual(p, p.wkt)
self.assertNotEqual(p, 'foo')
ls = fromstr('LINESTRING(0 0, 1 1, 5 5)')
self.assertEqual(ls, ls.wkt)
self.assertNotEqual(p, 'bar')
# Error shouldn't be raise on equivalence testing with
# an invalid type.
for g in (p, ls):
self.assertNotEqual(g, None)
self.assertNotEqual(g, {'foo': 'bar'})
self.assertNotEqual(g, False)
def test_points(self):
"Testing Point objects."
prev = fromstr('POINT(0 0)')
for p in self.geometries.points:
# Creating the point from the WKT
pnt = fromstr(p.wkt)
self.assertEqual(pnt.geom_type, 'Point')
self.assertEqual(pnt.geom_typeid, 0)
self.assertEqual(p.x, pnt.x)
self.assertEqual(p.y, pnt.y)
self.assertEqual(True, pnt == fromstr(p.wkt))
self.assertEqual(False, pnt == prev)
# Making sure that the point's X, Y components are what we expect
self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
# Testing the third dimension, and getting the tuple arguments
if hasattr(p, 'z'):
self.assertEqual(True, pnt.hasz)
self.assertEqual(p.z, pnt.z)
self.assertEqual(p.z, pnt.tuple[2], 9)
tup_args = (p.x, p.y, p.z)
set_tup1 = (2.71, 3.14, 5.23)
set_tup2 = (5.23, 2.71, 3.14)
else:
self.assertEqual(False, pnt.hasz)
self.assertEqual(None, pnt.z)
tup_args = (p.x, p.y)
set_tup1 = (2.71, 3.14)
set_tup2 = (3.14, 2.71)
# Centroid operation on point should be point itself
self.assertEqual(p.centroid, pnt.centroid.tuple)
# Now testing the different constructors
pnt2 = Point(tup_args) # e.g., Point((1, 2))
pnt3 = Point(*tup_args) # e.g., Point(1, 2)
self.assertEqual(True, pnt == pnt2)
self.assertEqual(True, pnt == pnt3)
# Now testing setting the x and y
pnt.y = 3.14
pnt.x = 2.71
self.assertEqual(3.14, pnt.y)
self.assertEqual(2.71, pnt.x)
# Setting via the tuple/coords property
pnt.tuple = set_tup1
self.assertEqual(set_tup1, pnt.tuple)
pnt.coords = set_tup2
self.assertEqual(set_tup2, pnt.coords)
prev = pnt # setting the previous geometry
def test_multipoints(self):
"Testing MultiPoint objects."
for mp in self.geometries.multipoints:
mpnt = fromstr(mp.wkt)
self.assertEqual(mpnt.geom_type, 'MultiPoint')
self.assertEqual(mpnt.geom_typeid, 4)
self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt))
self.assertEqual(mp.centroid, mpnt.centroid.tuple)
self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt))
for p in mpnt:
self.assertEqual(p.geom_type, 'Point')
self.assertEqual(p.geom_typeid, 0)
self.assertEqual(p.empty, False)
self.assertEqual(p.valid, True)
def test_linestring(self):
"Testing LineString objects."
prev = fromstr('POINT(0 0)')
for l in self.geometries.linestrings:
ls = fromstr(l.wkt)
self.assertEqual(ls.geom_type, 'LineString')
self.assertEqual(ls.geom_typeid, 1)
self.assertEqual(ls.empty, False)
self.assertEqual(ls.ring, False)
if hasattr(l, 'centroid'):
self.assertEqual(l.centroid, ls.centroid.tuple)
if hasattr(l, 'tup'):
self.assertEqual(l.tup, ls.tuple)
self.assertEqual(True, ls == fromstr(l.wkt))
self.assertEqual(False, ls == prev)
self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls))
prev = ls
# Creating a LineString from a tuple, list, and numpy array
self.assertEqual(ls, LineString(ls.tuple)) # tuple
self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) # Point individual arguments
if numpy:
self.assertEqual(ls, LineString(numpy.array(ls.tuple))) # as numpy array
def test_multilinestring(self):
"Testing MultiLineString objects."
prev = fromstr('POINT(0 0)')
for l in self.geometries.multilinestrings:
ml = fromstr(l.wkt)
self.assertEqual(ml.geom_type, 'MultiLineString')
self.assertEqual(ml.geom_typeid, 5)
self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9)
self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9)
self.assertEqual(True, ml == fromstr(l.wkt))
self.assertEqual(False, ml == prev)
prev = ml
for ls in ml:
self.assertEqual(ls.geom_type, 'LineString')
self.assertEqual(ls.geom_typeid, 1)
self.assertEqual(ls.empty, False)
self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml))
self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml)))
def test_linearring(self):
"Testing LinearRing objects."
for rr in self.geometries.linearrings:
lr = fromstr(rr.wkt)
self.assertEqual(lr.geom_type, 'LinearRing')
self.assertEqual(lr.geom_typeid, 2)
self.assertEqual(rr.n_p, len(lr))
self.assertEqual(True, lr.valid)
self.assertEqual(False, lr.empty)
# Creating a LinearRing from a tuple, list, and numpy array
self.assertEqual(lr, LinearRing(lr.tuple))
self.assertEqual(lr, LinearRing(*lr.tuple))
self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
if numpy:
self.assertEqual(lr, LinearRing(numpy.array(lr.tuple)))
def test_polygons_from_bbox(self):
"Testing `from_bbox` class method."
bbox = (-180, -90, 180, 90)
p = Polygon.from_bbox(bbox)
self.assertEqual(bbox, p.extent)
# Testing numerical precision
x = 3.14159265358979323
bbox = (0, 0, 1, x)
p = Polygon.from_bbox(bbox)
y = p.extent[-1]
self.assertEqual(format(x, '.13f'), format(y, '.13f'))
def test_polygons(self):
"Testing Polygon objects."
prev = fromstr('POINT(0 0)')
for p in self.geometries.polygons:
# Creating the Polygon, testing its properties.
poly = fromstr(p.wkt)
self.assertEqual(poly.geom_type, 'Polygon')
self.assertEqual(poly.geom_typeid, 3)
self.assertEqual(poly.empty, False)
self.assertEqual(poly.ring, False)
self.assertEqual(p.n_i, poly.num_interior_rings)
self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
self.assertEqual(p.n_p, poly.num_points)
# Area & Centroid
self.assertAlmostEqual(p.area, poly.area, 9)
self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
# Testing the geometry equivalence
self.assertEqual(True, poly == fromstr(p.wkt))
self.assertEqual(False, poly == prev) # Should not be equal to previous geometry
self.assertEqual(True, poly != prev)
# Testing the exterior ring
ring = poly.exterior_ring
self.assertEqual(ring.geom_type, 'LinearRing')
self.assertEqual(ring.geom_typeid, 2)
if p.ext_ring_cs:
self.assertEqual(p.ext_ring_cs, ring.tuple)
self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
# Testing __getitem__ and __setitem__ on invalid indices
self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly))
self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False)
self.assertRaises(GEOSIndexError, poly.__getitem__, -1 * len(poly) - 1)
# Testing __iter__
for r in poly:
self.assertEqual(r.geom_type, 'LinearRing')
self.assertEqual(r.geom_typeid, 2)
# Testing polygon construction.
self.assertRaises(TypeError, Polygon, 0, [1, 2, 3])
self.assertRaises(TypeError, Polygon, 'foo')
# Polygon(shell, (hole1, ... holeN))
rings = tuple(r for r in poly)
self.assertEqual(poly, Polygon(rings[0], rings[1:]))
# Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
ring_tuples = tuple(r.tuple for r in poly)
self.assertEqual(poly, Polygon(*ring_tuples))
# Constructing with tuples of LinearRings.
self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt)
def test_polygon_comparison(self):
p1 = Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
p2 = Polygon(((0, 0), (0, 1), (1, 0), (0, 0)))
self.assertTrue(p1 > p2)
self.assertFalse(p1 < p2)
self.assertFalse(p2 > p1)
self.assertTrue(p2 < p1)
p3 = Polygon(((0, 0), (0, 1), (1, 1), (2, 0), (0, 0)))
p4 = Polygon(((0, 0), (0, 1), (2, 2), (1, 0), (0, 0)))
self.assertFalse(p4 < p3)
self.assertTrue(p3 < p4)
self.assertTrue(p4 > p3)
self.assertFalse(p3 > p4)
def test_multipolygons(self):
"Testing MultiPolygon objects."
fromstr('POINT (0 0)')
for mp in self.geometries.multipolygons:
mpoly = fromstr(mp.wkt)
self.assertEqual(mpoly.geom_type, 'MultiPolygon')
self.assertEqual(mpoly.geom_typeid, 6)
self.assertEqual(mp.valid, mpoly.valid)
if mp.valid:
self.assertEqual(mp.num_geom, mpoly.num_geom)
self.assertEqual(mp.n_p, mpoly.num_coords)
self.assertEqual(mp.num_geom, len(mpoly))
self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly))
for p in mpoly:
self.assertEqual(p.geom_type, 'Polygon')
self.assertEqual(p.geom_typeid, 3)
self.assertEqual(p.valid, True)
self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt)
def test_memory_hijinks(self):
"Testing Geometry __del__() on rings and polygons."
#### Memory issues with rings and polygons
# These tests are needed to ensure sanity with writable geometries.
# Getting a polygon with interior rings, and pulling out the interior rings
poly = fromstr(self.geometries.polygons[1].wkt)
ring1 = poly[0]
ring2 = poly[1]
# These deletes should be 'harmless' since they are done on child geometries
del ring1
del ring2
ring1 = poly[0]
ring2 = poly[1]
# Deleting the polygon
del poly
# Access to these rings is OK since they are clones.
str(ring1)
str(ring2)
def test_coord_seq(self):
"Testing Coordinate Sequence objects."
for p in self.geometries.polygons:
if p.ext_ring_cs:
# Constructing the polygon and getting the coordinate sequence
poly = fromstr(p.wkt)
cs = poly.exterior_ring.coord_seq
self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too.
self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works
# Checks __getitem__ and __setitem__
for i in xrange(len(p.ext_ring_cs)):
c1 = p.ext_ring_cs[i] # Expected value
c2 = cs[i] # Value from coordseq
self.assertEqual(c1, c2)
# Constructing the test value to set the coordinate sequence with
if len(c1) == 2:
tset = (5, 23)
else:
tset = (5, 23, 8)
cs[i] = tset
# Making sure every set point matches what we expect
for j in range(len(tset)):
cs[i] = tset
self.assertEqual(tset[j], cs[i][j])
def test_relate_pattern(self):
"Testing relate() and relate_pattern()."
g = fromstr('POINT (0 0)')
self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo')
for rg in self.geometries.relate_geoms:
a = fromstr(rg.wkt_a)
b = fromstr(rg.wkt_b)
self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern))
self.assertEqual(rg.pattern, a.relate(b))
def test_intersection(self):
"Testing intersects() and intersection()."
for i in xrange(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
i1 = fromstr(self.geometries.intersect_geoms[i].wkt)
self.assertEqual(True, a.intersects(b))
i2 = a.intersection(b)
self.assertEqual(i1, i2)
self.assertEqual(i1, a & b) # __and__ is intersection operator
a &= b # testing __iand__
self.assertEqual(i1, a)
def test_union(self):
"Testing union()."
for i in xrange(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
u1 = fromstr(self.geometries.union_geoms[i].wkt)
u2 = a.union(b)
self.assertEqual(u1, u2)
self.assertEqual(u1, a | b) # __or__ is union operator
a |= b # testing __ior__
self.assertEqual(u1, a)
def test_difference(self):
"Testing difference()."
for i in xrange(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
d1 = fromstr(self.geometries.diff_geoms[i].wkt)
d2 = a.difference(b)
self.assertEqual(d1, d2)
self.assertEqual(d1, a - b) # __sub__ is difference operator
a -= b # testing __isub__
self.assertEqual(d1, a)
def test_symdifference(self):
"Testing sym_difference()."
for i in xrange(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
d1 = fromstr(self.geometries.sdiff_geoms[i].wkt)
d2 = a.sym_difference(b)
self.assertEqual(d1, d2)
self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator
a ^= b # testing __ixor__
self.assertEqual(d1, a)
def test_buffer(self):
"Testing buffer()."
for bg in self.geometries.buffer_geoms:
g = fromstr(bg.wkt)
# The buffer we expect
exp_buf = fromstr(bg.buffer_wkt)
quadsegs = bg.quadsegs
width = bg.width
# Can't use a floating-point for the number of quadsegs.
self.assertRaises(ctypes.ArgumentError, g.buffer, width, float(quadsegs))
# Constructing our buffer
buf = g.buffer(width, quadsegs)
self.assertEqual(exp_buf.num_coords, buf.num_coords)
self.assertEqual(len(exp_buf), len(buf))
# Now assuring that each point in the buffer is almost equal
for j in xrange(len(exp_buf)):
exp_ring = exp_buf[j]
buf_ring = buf[j]
self.assertEqual(len(exp_ring), len(buf_ring))
for k in xrange(len(exp_ring)):
# Asserting the X, Y of each point are almost equal (due to floating point imprecision)
self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
def test_srid(self):
"Testing the SRID property and keyword."
# Testing SRID keyword on Point
pnt = Point(5, 23, srid=4326)
self.assertEqual(4326, pnt.srid)
pnt.srid = 3084
self.assertEqual(3084, pnt.srid)
self.assertRaises(ctypes.ArgumentError, pnt.set_srid, '4326')
# Testing SRID keyword on fromstr(), and on Polygon rings.
poly = fromstr(self.geometries.polygons[1].wkt, srid=4269)
self.assertEqual(4269, poly.srid)
for ring in poly:
self.assertEqual(4269, ring.srid)
poly.srid = 4326
self.assertEqual(4326, poly.shell.srid)
# Testing SRID keyword on GeometryCollection
gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021)
self.assertEqual(32021, gc.srid)
for i in range(len(gc)):
self.assertEqual(32021, gc[i].srid)
# GEOS may get the SRID from HEXEWKB
# 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
# using `SELECT GeomFromText('POINT (5 23)', 4326);`.
hex = '0101000020E610000000000000000014400000000000003740'
p1 = fromstr(hex)
self.assertEqual(4326, p1.srid)
# In GEOS 3.0.0rc1-4 when the EWKB and/or HEXEWKB is exported,
# the SRID information is lost and set to -1 -- this is not a
# problem on the 3.0.0 version (another reason to upgrade).
exp_srid = self.null_srid
p2 = fromstr(p1.hex)
self.assertEqual(exp_srid, p2.srid)
p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
self.assertEqual(-1, p3.srid)
@skipUnless(HAS_GDAL, "GDAL is required.")
def test_custom_srid(self):
""" Test with a srid unknown from GDAL """
pnt = Point(111200, 220900, srid=999999)
self.assertTrue(pnt.ewkt.startswith("SRID=999999;POINT (111200.0"))
self.assertIsInstance(pnt.ogr, gdal.OGRGeometry)
self.assertIsNone(pnt.srs)
# Test conversion from custom to a known srid
c2w = gdal.CoordTransform(
gdal.SpatialReference('+proj=mill +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +R_A +ellps=WGS84 +datum=WGS84 +units=m +no_defs'),
gdal.SpatialReference(4326))
new_pnt = pnt.transform(c2w, clone=True)
self.assertEqual(new_pnt.srid, 4326)
self.assertAlmostEqual(new_pnt.x, 1, 3)
self.assertAlmostEqual(new_pnt.y, 2, 3)
def test_mutable_geometries(self):
"Testing the mutability of Polygons and Geometry Collections."
### Testing the mutability of Polygons ###
for p in self.geometries.polygons:
poly = fromstr(p.wkt)
# Should only be able to use __setitem__ with LinearRing geometries.
self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2)))
# Constructing the new shell by adding 500 to every point in the old shell.
shell_tup = poly.shell.tuple
new_coords = []
for point in shell_tup:
new_coords.append((point[0] + 500., point[1] + 500.))
new_shell = LinearRing(*tuple(new_coords))
# Assigning polygon's exterior ring w/the new shell
poly.exterior_ring = new_shell
str(new_shell) # new shell is still accessible
self.assertEqual(poly.exterior_ring, new_shell)
self.assertEqual(poly[0], new_shell)
### Testing the mutability of Geometry Collections
for tg in self.geometries.multipoints:
mp = fromstr(tg.wkt)
for i in range(len(mp)):
# Creating a random point.
pnt = mp[i]
new = Point(random.randint(21, 100), random.randint(21, 100))
# Testing the assignment
mp[i] = new
str(new) # what was used for the assignment is still accessible
self.assertEqual(mp[i], new)
self.assertEqual(mp[i].wkt, new.wkt)
self.assertNotEqual(pnt, mp[i])
# MultiPolygons involve much more memory management because each
# Polygon w/in the collection has its own rings.
for tg in self.geometries.multipolygons:
mpoly = fromstr(tg.wkt)
for i in xrange(len(mpoly)):
poly = mpoly[i]
old_poly = mpoly[i]
# Offsetting the each ring in the polygon by 500.
for j in xrange(len(poly)):
r = poly[j]
for k in xrange(len(r)):
r[k] = (r[k][0] + 500., r[k][1] + 500.)
poly[j] = r
self.assertNotEqual(mpoly[i], poly)
# Testing the assignment
mpoly[i] = poly
str(poly) # Still accessible
self.assertEqual(mpoly[i], poly)
self.assertNotEqual(mpoly[i], old_poly)
# Extreme (!!) __setitem__ -- no longer works, have to detect
# in the first object that __setitem__ is called in the subsequent
# objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
#mpoly[0][0][0] = (3.14, 2.71)
#self.assertEqual((3.14, 2.71), mpoly[0][0][0])
# Doing it more slowly..
#self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
#del mpoly
def test_threed(self):
"Testing three-dimensional geometries."
# Testing a 3D Point
pnt = Point(2, 3, 8)
self.assertEqual((2., 3., 8.), pnt.coords)
self.assertRaises(TypeError, pnt.set_coords, (1., 2.))
pnt.coords = (1., 2., 3.)
self.assertEqual((1., 2., 3.), pnt.coords)
# Testing a 3D LineString
ls = LineString((2., 3., 8.), (50., 250., -117.))
self.assertEqual(((2., 3., 8.), (50., 250., -117.)), ls.tuple)
self.assertRaises(TypeError, ls.__setitem__, 0, (1., 2.))
ls[0] = (1., 2., 3.)
self.assertEqual((1., 2., 3.), ls[0])
def test_distance(self):
"Testing the distance() function."
# Distance to self should be 0.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.distance(Point(0, 0)))
# Distance should be 1
self.assertEqual(1.0, pnt.distance(Point(0, 1)))
# Distance should be ~ sqrt(2)
self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
# Distances are from the closest vertex in each geometry --
# should be 3 (distance from (2, 2) to (5, 2)).
ls1 = LineString((0, 0), (1, 1), (2, 2))
ls2 = LineString((5, 2), (6, 1), (7, 0))
self.assertEqual(3, ls1.distance(ls2))
def test_length(self):
"Testing the length property."
# Points have 0 length.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.length)
# Should be ~ sqrt(2)
ls = LineString((0, 0), (1, 1))
self.assertAlmostEqual(1.41421356237, ls.length, 11)
# Should be circumference of Polygon
poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
self.assertEqual(4.0, poly.length)
# Should be sum of each element's length in collection.
mpoly = MultiPolygon(poly.clone(), poly)
self.assertEqual(8.0, mpoly.length)
def test_emptyCollections(self):
"Testing empty geometries and collections."
gc1 = GeometryCollection([])
gc2 = fromstr('GEOMETRYCOLLECTION EMPTY')
pnt = fromstr('POINT EMPTY')
ls = fromstr('LINESTRING EMPTY')
poly = fromstr('POLYGON EMPTY')
mls = fromstr('MULTILINESTRING EMPTY')
mpoly1 = fromstr('MULTIPOLYGON EMPTY')
mpoly2 = MultiPolygon(())
for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]:
self.assertEqual(True, g.empty)
# Testing len() and num_geom.
if isinstance(g, Polygon):
self.assertEqual(1, len(g)) # Has one empty linear ring
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g[0]))
elif isinstance(g, (Point, LineString)):
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g))
else:
self.assertEqual(0, g.num_geom)
self.assertEqual(0, len(g))
# Testing __getitem__ (doesn't work on Point or Polygon)
if isinstance(g, Point):
self.assertRaises(GEOSIndexError, g.get_x)
elif isinstance(g, Polygon):
lr = g.shell
self.assertEqual('LINEARRING EMPTY', lr.wkt)
self.assertEqual(0, len(lr))
self.assertEqual(True, lr.empty)
self.assertRaises(GEOSIndexError, lr.__getitem__, 0)
else:
self.assertRaises(GEOSIndexError, g.__getitem__, 0)
def test_collections_of_collections(self):
"Testing GeometryCollection handling of other collections."
# Creating a GeometryCollection WKT string composed of other
# collections and polygons.
coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid]
coll.extend(mls.wkt for mls in self.geometries.multilinestrings)
coll.extend(p.wkt for p in self.geometries.polygons)
coll.extend(mp.wkt for mp in self.geometries.multipoints)
gc_wkt = 'GEOMETRYCOLLECTION(%s)' % ','.join(coll)
# Should construct ok from WKT
gc1 = GEOSGeometry(gc_wkt)
# Should also construct ok from individual geometry arguments.
gc2 = GeometryCollection(*tuple(g for g in gc1))
# And, they should be equal.
self.assertEqual(gc1, gc2)
@skipUnless(HAS_GDAL, "GDAL is required.")
def test_gdal(self):
"Testing `ogr` and `srs` properties."
g1 = fromstr('POINT(5 23)')
self.assertIsInstance(g1.ogr, gdal.OGRGeometry)
self.assertIsNone(g1.srs)
g1_3d = fromstr('POINT(5 23 8)')
self.assertIsInstance(g1_3d.ogr, gdal.OGRGeometry)
self.assertEqual(g1_3d.ogr.z, 8)
g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326)
self.assertIsInstance(g2.ogr, gdal.OGRGeometry)
self.assertIsInstance(g2.srs, gdal.SpatialReference)
self.assertEqual(g2.hex, g2.ogr.hex)
self.assertEqual('WGS 84', g2.srs.name)
def test_copy(self):
"Testing use with the Python `copy` module."
import copy
poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))')
cpy1 = copy.copy(poly)
cpy2 = copy.deepcopy(poly)
self.assertNotEqual(poly._ptr, cpy1._ptr)
self.assertNotEqual(poly._ptr, cpy2._ptr)
@skipUnless(HAS_GDAL, "GDAL is required to transform geometries")
def test_transform(self):
"Testing `transform` method."
orig = GEOSGeometry('POINT (-104.609 38.255)', 4326)
trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774)
# Using a srid, a SpatialReference object, and a CoordTransform object
# for transformations.
t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
t1.transform(trans.srid)
t2.transform(gdal.SpatialReference('EPSG:2774'))
ct = gdal.CoordTransform(gdal.SpatialReference('WGS84'), gdal.SpatialReference(2774))
t3.transform(ct)
# Testing use of the `clone` keyword.
k1 = orig.clone()
k2 = k1.transform(trans.srid, clone=True)
self.assertEqual(k1, orig)
self.assertNotEqual(k1, k2)
prec = 3
for p in (t1, t2, t3, k2):
self.assertAlmostEqual(trans.x, p.x, prec)
self.assertAlmostEqual(trans.y, p.y, prec)
@skipUnless(HAS_GDAL, "GDAL is required to transform geometries")
def test_transform_3d(self):
p3d = GEOSGeometry('POINT (5 23 100)', 4326)
p3d.transform(2774)
self.assertEqual(p3d.z, 100)
@skipUnless(HAS_GDAL, "GDAL is required.")
def test_transform_noop(self):
""" Testing `transform` method (SRID match) """
# transform() should no-op if source & dest SRIDs match,
# regardless of whether GDAL is available.
if gdal.HAS_GDAL:
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
gt = g.tuple
g.transform(4326)
self.assertEqual(g.tuple, gt)
self.assertEqual(g.srid, 4326)
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
g1 = g.transform(4326, clone=True)
self.assertEqual(g1.tuple, g.tuple)
self.assertEqual(g1.srid, 4326)
self.assertTrue(g1 is not g, "Clone didn't happen")
old_has_gdal = gdal.HAS_GDAL
try:
gdal.HAS_GDAL = False
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
gt = g.tuple
g.transform(4326)
self.assertEqual(g.tuple, gt)
self.assertEqual(g.srid, 4326)
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
g1 = g.transform(4326, clone=True)
self.assertEqual(g1.tuple, g.tuple)
self.assertEqual(g1.srid, 4326)
self.assertTrue(g1 is not g, "Clone didn't happen")
finally:
gdal.HAS_GDAL = old_has_gdal
def test_transform_nosrid(self):
""" Testing `transform` method (no SRID or negative SRID) """
g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
self.assertRaises(GEOSException, g.transform, 2774)
g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
self.assertRaises(GEOSException, g.transform, 2774, clone=True)
g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
self.assertRaises(GEOSException, g.transform, 2774)
g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
self.assertRaises(GEOSException, g.transform, 2774, clone=True)
@skipUnless(HAS_GDAL, "GDAL is required.")
def test_transform_nogdal(self):
""" Testing `transform` method (GDAL not available) """
old_has_gdal = gdal.HAS_GDAL
try:
gdal.HAS_GDAL = False
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
self.assertRaises(GEOSException, g.transform, 2774)
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
self.assertRaises(GEOSException, g.transform, 2774, clone=True)
finally:
gdal.HAS_GDAL = old_has_gdal
def test_extent(self):
"Testing `extent` method."
# The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
pnt = Point(5.23, 17.8)
# Extent of points is just the point itself repeated.
self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
# Testing on the 'real world' Polygon.
poly = fromstr(self.geometries.polygons[3].wkt)
ring = poly.shell
x, y = ring.x, ring.y
xmin, ymin = min(x), min(y)
xmax, ymax = max(x), max(y)
self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
def test_pickle(self):
"Testing pickling and unpickling support."
# Using both pickle and cPickle -- just 'cause.
from django.utils.six.moves import cPickle
import pickle
# Creating a list of test geometries for pickling,
# and setting the SRID on some of them.
def get_geoms(lst, srid=None):
return [GEOSGeometry(tg.wkt, srid) for tg in lst]
tgeoms = get_geoms(self.geometries.points)
tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326))
tgeoms.extend(get_geoms(self.geometries.polygons, 3084))
tgeoms.extend(get_geoms(self.geometries.multipolygons, 3857))
# The SRID won't be exported in GEOS 3.0 release candidates.
no_srid = self.null_srid == -1
for geom in tgeoms:
s1, s2 = cPickle.dumps(geom), pickle.dumps(geom)
g1, g2 = cPickle.loads(s1), pickle.loads(s2)
for tmpg in (g1, g2):
self.assertEqual(geom, tmpg)
if not no_srid:
self.assertEqual(geom.srid, tmpg.srid)
def test_prepared(self):
"Testing PreparedGeometry support."
# Creating a simple multipolygon and getting a prepared version.
mpoly = GEOSGeometry('MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))')
prep = mpoly.prepared
# A set of test points.
pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)]
covers = [True, True, False] # No `covers` op for regular GEOS geoms.
for pnt, c in zip(pnts, covers):
# Results should be the same (but faster)
self.assertEqual(mpoly.contains(pnt), prep.contains(pnt))
self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt))
self.assertEqual(c, prep.covers(pnt))
if geos_version_info()['version'] > '3.3.0':
self.assertTrue(prep.crosses(fromstr('LINESTRING(1 1, 15 15)')))
self.assertTrue(prep.disjoint(Point(-5, -5)))
poly = Polygon(((-1, -1), (1, 1), (1, 0), (-1, -1)))
self.assertTrue(prep.overlaps(poly))
poly = Polygon(((-5, 0), (-5, 5), (0, 5), (-5, 0)))
self.assertTrue(prep.touches(poly))
poly = Polygon(((-1, -1), (-1, 11), (11, 11), (11, -1), (-1, -1)))
self.assertTrue(prep.within(poly))
# Original geometry deletion should not crash the prepared one (#21662)
del mpoly
self.assertTrue(prep.covers(Point(5, 5)))
def test_line_merge(self):
"Testing line merge support"
ref_geoms = (fromstr('LINESTRING(1 1, 1 1, 3 3)'),
fromstr('MULTILINESTRING((1 1, 3 3), (3 3, 4 2))'),
)
ref_merged = (fromstr('LINESTRING(1 1, 3 3)'),
fromstr('LINESTRING (1 1, 3 3, 4 2)'),
)
for geom, merged in zip(ref_geoms, ref_merged):
self.assertEqual(merged, geom.merged)
def test_valid_reason(self):
"Testing IsValidReason support"
g = GEOSGeometry("POINT(0 0)")
self.assertTrue(g.valid)
self.assertIsInstance(g.valid_reason, six.string_types)
self.assertEqual(g.valid_reason, "Valid Geometry")
g = GEOSGeometry("LINESTRING(0 0, 0 0)")
self.assertFalse(g.valid)
self.assertIsInstance(g.valid_reason, six.string_types)
self.assertTrue(g.valid_reason.startswith("Too few points in geometry component"))
@skipUnless(HAS_GEOS and geos_version_info()['version'] >= '3.2.0', "geos >= 3.2.0 is required")
def test_linearref(self):
"Testing linear referencing"
ls = fromstr('LINESTRING(0 0, 0 10, 10 10, 10 0)')
mls = fromstr('MULTILINESTRING((0 0, 0 10), (10 0, 10 10))')
self.assertEqual(ls.project(Point(0, 20)), 10.0)
self.assertEqual(ls.project(Point(7, 6)), 24)
self.assertEqual(ls.project_normalized(Point(0, 20)), 1.0 / 3)
self.assertEqual(ls.interpolate(10), Point(0, 10))
self.assertEqual(ls.interpolate(24), Point(10, 6))
self.assertEqual(ls.interpolate_normalized(1.0 / 3), Point(0, 10))
self.assertEqual(mls.project(Point(0, 20)), 10)
self.assertEqual(mls.project(Point(7, 6)), 16)
self.assertEqual(mls.interpolate(9), Point(0, 9))
self.assertEqual(mls.interpolate(17), Point(10, 7))
def test_geos_version(self):
"""Testing the GEOS version regular expression."""
from django.contrib.gis.geos.libgeos import version_regex
versions = [('3.0.0rc4-CAPI-1.3.3', '3.0.0', '1.3.3'),
('3.0.0-CAPI-1.4.1', '3.0.0', '1.4.1'),
('3.4.0dev-CAPI-1.8.0', '3.4.0', '1.8.0'),
('3.4.0dev-CAPI-1.8.0 r0', '3.4.0', '1.8.0')]
for v_init, v_geos, v_capi in versions:
m = version_regex.match(v_init)
self.assertTrue(m, msg="Unable to parse the version string '%s'" % v_init)
self.assertEqual(m.group('version'), v_geos)
self.assertEqual(m.group('capi_version'), v_capi)