django1/django/db/migrations/executor.py

249 lines
12 KiB
Python

from __future__ import unicode_literals
from django.apps.registry import apps as global_apps
from django.db import migrations
from .loader import MigrationLoader
from .recorder import MigrationRecorder
from .state import ProjectState
class MigrationExecutor(object):
"""
End-to-end migration execution - loads migrations, and runs them
up or down to a specified set of targets.
"""
def __init__(self, connection, progress_callback=None):
self.connection = connection
self.loader = MigrationLoader(self.connection)
self.recorder = MigrationRecorder(self.connection)
self.progress_callback = progress_callback
def migration_plan(self, targets, clean_start=False):
"""
Given a set of targets, returns a list of (Migration instance, backwards?).
"""
plan = []
if clean_start:
applied = set()
else:
applied = set(self.loader.applied_migrations)
for target in targets:
# If the target is (app_label, None), that means unmigrate everything
if target[1] is None:
for root in self.loader.graph.root_nodes():
if root[0] == target[0]:
for migration in self.loader.graph.backwards_plan(root):
if migration in applied:
plan.append((self.loader.graph.nodes[migration], True))
applied.remove(migration)
# If the migration is already applied, do backwards mode,
# otherwise do forwards mode.
elif target in applied:
# Don't migrate backwards all the way to the target node (that
# may roll back dependencies in other apps that don't need to
# be rolled back); instead roll back through target's immediate
# child(ren) in the same app, and no further.
next_in_app = sorted(
n for n in
self.loader.graph.node_map[target].children
if n[0] == target[0]
)
for node in next_in_app:
for migration in self.loader.graph.backwards_plan(node):
if migration in applied:
plan.append((self.loader.graph.nodes[migration], True))
applied.remove(migration)
else:
for migration in self.loader.graph.forwards_plan(target):
if migration not in applied:
plan.append((self.loader.graph.nodes[migration], False))
applied.add(migration)
return plan
def migrate(self, targets, plan=None, fake=False, fake_initial=False):
"""
Migrates the database up to the given targets.
Django first needs to create all project states before a migration is
(un)applied and in a second step run all the database operations.
"""
if plan is None:
plan = self.migration_plan(targets)
migrations_to_run = {m[0] for m in plan}
# Create the forwards plan Django would follow on an empty database
full_plan = self.migration_plan(self.loader.graph.leaf_nodes(), clean_start=True)
# Holds all states right before a migration is applied
# if the migration is being run.
states = {}
state = ProjectState(real_apps=list(self.loader.unmigrated_apps))
if self.progress_callback:
self.progress_callback("render_start")
# Phase 1 -- Store all project states of migrations right before they
# are applied. The first migration that will be applied in phase 2 will
# trigger the rendering of the initial project state. From this time on
# models will be recursively reloaded as explained in
# `django.db.migrations.state.get_related_models_recursive()`.
for migration, _ in full_plan:
if not migrations_to_run:
# We remove every migration whose state was already computed
# from the set below (`migrations_to_run.remove(migration)`).
# If no states for migrations must be computed, we can exit
# this loop. Migrations that occur after the latest migration
# that is about to be applied would only trigger unneeded
# mutate_state() calls.
break
do_run = migration in migrations_to_run
if do_run:
if 'apps' not in state.__dict__:
state.apps # Render all real_apps -- performance critical
states[migration] = state.clone()
migrations_to_run.remove(migration)
# Only preserve the state if the migration is being run later
state = migration.mutate_state(state, preserve=do_run)
if self.progress_callback:
self.progress_callback("render_success")
# Phase 2 -- Run the migrations
for migration, backwards in plan:
if not backwards:
self.apply_migration(states[migration], migration, fake=fake, fake_initial=fake_initial)
else:
self.unapply_migration(states[migration], migration, fake=fake)
self.check_replacements()
def collect_sql(self, plan):
"""
Takes a migration plan and returns a list of collected SQL
statements that represent the best-efforts version of that plan.
"""
statements = []
state = None
for migration, backwards in plan:
with self.connection.schema_editor(collect_sql=True) as schema_editor:
if state is None:
state = self.loader.project_state((migration.app_label, migration.name), at_end=False)
if not backwards:
state = migration.apply(state, schema_editor, collect_sql=True)
else:
state = migration.unapply(state, schema_editor, collect_sql=True)
statements.extend(schema_editor.collected_sql)
return statements
def apply_migration(self, state, migration, fake=False, fake_initial=False):
"""
Runs a migration forwards.
"""
if self.progress_callback:
self.progress_callback("apply_start", migration, fake)
if not fake:
if fake_initial:
# Test to see if this is an already-applied initial migration
applied, state = self.detect_soft_applied(state, migration)
if applied:
fake = True
if not fake:
# Alright, do it normally
with self.connection.schema_editor() as schema_editor:
state = migration.apply(state, schema_editor)
# For replacement migrations, record individual statuses
if migration.replaces:
for app_label, name in migration.replaces:
self.recorder.record_applied(app_label, name)
else:
self.recorder.record_applied(migration.app_label, migration.name)
# Report progress
if self.progress_callback:
self.progress_callback("apply_success", migration, fake)
return state
def unapply_migration(self, state, migration, fake=False):
"""
Runs a migration backwards.
"""
if self.progress_callback:
self.progress_callback("unapply_start", migration, fake)
if not fake:
with self.connection.schema_editor() as schema_editor:
state = migration.unapply(state, schema_editor)
# For replacement migrations, record individual statuses
if migration.replaces:
for app_label, name in migration.replaces:
self.recorder.record_unapplied(app_label, name)
else:
self.recorder.record_unapplied(migration.app_label, migration.name)
# Report progress
if self.progress_callback:
self.progress_callback("unapply_success", migration, fake)
return state
def check_replacements(self):
"""
Mark replacement migrations applied if their replaced set all are.
We do this unconditionally on every migrate, rather than just when
migrations are applied or unapplied, so as to correctly handle the case
when a new squash migration is pushed to a deployment that already had
all its replaced migrations applied. In this case no new migration will
be applied, but we still want to correctly maintain the applied state
of the squash migration.
"""
applied = self.recorder.applied_migrations()
for key, migration in self.loader.replacements.items():
all_applied = all(m in applied for m in migration.replaces)
if all_applied and key not in applied:
self.recorder.record_applied(*key)
def detect_soft_applied(self, project_state, migration):
"""
Tests whether a migration has been implicitly applied - that the
tables or columns it would create exist. This is intended only for use
on initial migrations (as it only looks for CreateModel and AddField).
"""
if migration.initial is None:
# Bail if the migration isn't the first one in its app
if any(app == migration.app_label for app, name in migration.dependencies):
return False, project_state
elif migration.initial is False:
# Bail if it's NOT an initial migration
return False, project_state
if project_state is None:
after_state = self.loader.project_state((migration.app_label, migration.name), at_end=True)
else:
after_state = migration.mutate_state(project_state)
apps = after_state.apps
found_create_model_migration = False
found_add_field_migration = False
# Make sure all create model and add field operations are done
for operation in migration.operations:
if isinstance(operation, migrations.CreateModel):
model = apps.get_model(migration.app_label, operation.name)
if model._meta.swapped:
# We have to fetch the model to test with from the
# main app cache, as it's not a direct dependency.
model = global_apps.get_model(model._meta.swapped)
if model._meta.proxy or not model._meta.managed:
continue
if model._meta.db_table not in self.connection.introspection.table_names(self.connection.cursor()):
return False, project_state
found_create_model_migration = True
elif isinstance(operation, migrations.AddField):
model = apps.get_model(migration.app_label, operation.model_name)
if model._meta.swapped:
# We have to fetch the model to test with from the
# main app cache, as it's not a direct dependency.
model = global_apps.get_model(model._meta.swapped)
if model._meta.proxy or not model._meta.managed:
continue
table = model._meta.db_table
db_field = model._meta.get_field(operation.name).column
fields = self.connection.introspection.get_table_description(self.connection.cursor(), table)
if db_field not in (f.name for f in fields):
return False, project_state
found_add_field_migration = True
# If we get this far and we found at least one CreateModel or AddField migration,
# the migration is considered implicitly applied.
return (found_create_model_migration or found_add_field_migration), after_state